(案)

大規模噴火時の広域降灰対策について -首都圏における降灰の影響と対策- ~富士山噴火をモデルケースに~ (報告)【別添資料】

降灰シミュレーションのパラメータと計算結果

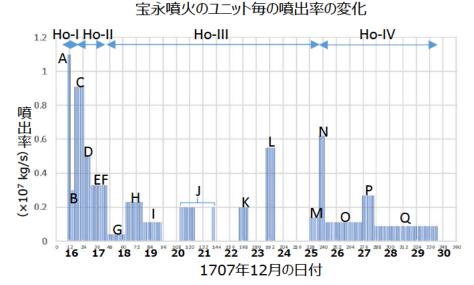
令和2年○月

大規模噴火時の広域降灰対策検討ワーキンググループ

検討対象とする降灰のケースの設定

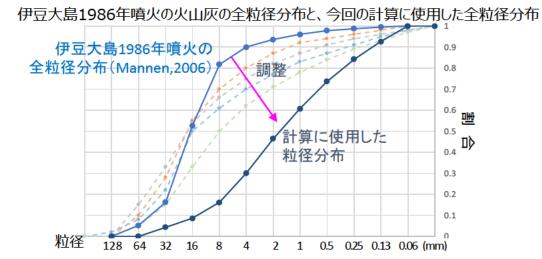
- ・噴火の総噴出量、噴出率、継続時間は、富士山の最近の山頂噴火及び山腹噴火の活動時期(須走-b期) 以降で火砕物が主である噴火の中で最大の噴火であり、噴火・降灰の実績が研究により最もよく判明している噴 火である、宝永噴火の実績を用いた。
- ・降灰分布が大きく依存する風向風速については、過去10年の館野の高層観測データ(気象庁)から、
 - -宝永噴火の実績に類似する西風卓越ケース
 - -影響下の人口・資産が大きくなる西南西風卓越ケース
 - -風向の変化が比較的大きい南よりの風のケース

を設定した。

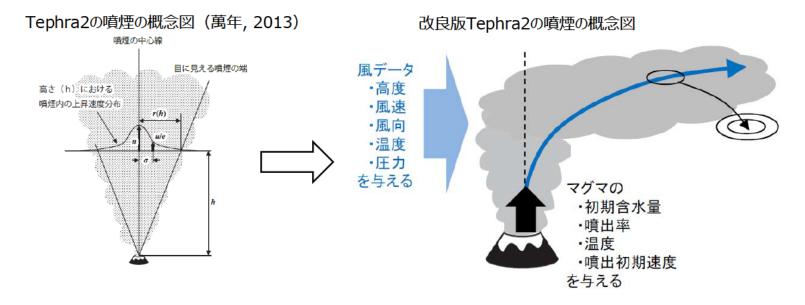

	ケース 1	ケース 2	ケース3
規模·噴出率		宝永噴火の規模・噴出率	
継続時間		15日間	
風向	西風卓越 (2018年12月16~30日)	西南西風卓越 (2010年10月14~28日)	変化が大きい南よりの風 (2012年9月2~16日)
降灰分布	神奈川県と千葉県に降灰分布の中心	神奈川県と東京都に降灰分布の中心	山梨県、静岡県、神奈川県に 降灰分布の中心
ケースの特徴	宝永噴火の実績と類似。	10cm以上の降灰範囲の人口・ 資産が比較的大きい。	比較的風向の変化が大きい。

[・]ここで計算した降灰分布は、対策を検討するためのケースであり、将来の富士山噴火時の降灰分布の予測ではないことに留意。

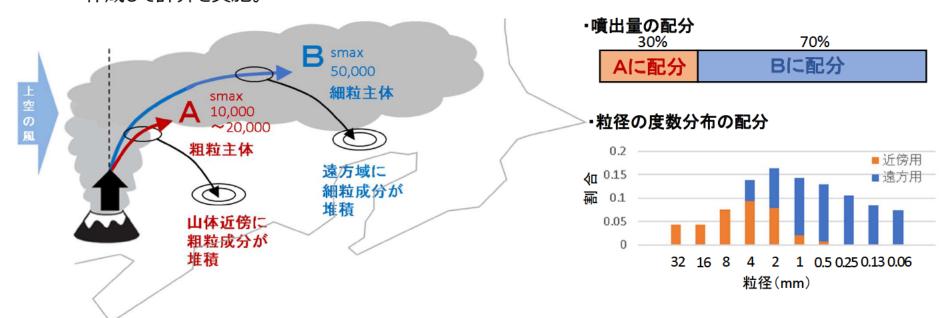
降灰シミュレーションの設定


- シミュレーションは以下のモデル・設定を用いて実施。
 - ▶ Eデル: 改良版Tephra2 (萬年委員ご提供)
 - ▶ 噴出量・噴出率: Miyaji et al (2011) の文献値を用いて設定。各噴火ユニット (A~Q) 毎に計算を実施。

宇永噴火各ユニット毎の噴出量・噴出率等 (Mivaii et al. 2011に内閣府加筆													
Group	Unit	Mass (× 10 ¹⁰ kg)	Duration (h)	Flux (×10 ⁷ kg/s)	Hb (km)	Ht (km)							
I	Α	5.7 ± 0.3	1.5	$1.1^{+\ 1.2}_{-\ 0.4}$	17^{+3}_{-2}	23+5							
	В	$4.4^{+0.3}_{-0.4}$	4.0	$0.30^{+0.34}_{-0.12}$	14^{+4}_{-3}	18^{+4}_{-3}							
II	C	26^{+0}_{-1}	8.0	$0.91^{+0.92}_{-0.32}$	17^{+3}_{-2}	22^{+4}_{-3}							
	D	$8.9^{+0.4}_{-0.8}$	5.0	$0.50^{+0.54}_{-0.20}$	15^{+4}_{-3}	19^{+5}_{-3}							
	E F	13 ± 1 $5.5^{+0.1}_{-0.5}$	15.5	$0.33^{+0.35}_{-0.12}$	14^{+4}_{-3}	18^{+4}_{-3}							
III	G	$2.1^{+0.1}_{-0.2}$	15.5	$0.04^{+0.04}_{-0.02}$	10^{+3}_{-2}	12^{+4}_{-3}							
	Н	14±1	17.5	$0.23^{+0.26}_{-0.08}$	13^{+4}_{-3}	17^{+4}_{-3}							
	I	$6.6^{+0.8}_{-1.2}$	16	$0.11^{+0.14}_{-0.05}$	12^{+4}_{-3}	15^{+4}_{-3}							
	J	12^{+0}_{-1}	16.5	$0.20^{+0.22}_{-0.08}$	13^{+4}_{-3}	16^{+4}_{-3}							
	K	$6.2^{+0.5}_{-0.6}$	8.5	$0.20^{+0.24}_{-0.08}$	13^{+4}_{-3}	16^{+4}_{-3}							
	L	18±2	9.0	$0.55^{+0.64}_{-0.23}$	15^{+4}_{-3}	$20^{+\frac{5}{3}}$							
	M	$4.1^{+0.4}_{-0.5}$	8.0	$0.14^{+0.17}_{-0.06}$	12^{+4}_{-3}	15^{+4}_{-3}							
IV	N	10^{+1}_{-2}	4.5	$0.62^{+0.77}_{-0.28}$	16^{+4}_{-3}	20^{+5}_{-4}							
	O	13^{+1}_{-2}	33.5	$0.11^{+0.13}_{-0.05}$	11^{+5}_{-3}	15^{+4}_{-3}							
	P	11^{+1}_{-2}	11.5	$0.27^{+0.33}_{-0.12}$	13^{+4}_{-3}	17^{+5}_{-3}							
	Q	18+3	57	$0.09^{+0.11}_{-0.04}$	11^{+4}_{-3}	14^{+4}_{-3}							
		噴出	量 ——	噴出	率								


※ Miyaji et al, 2011を元に内閣府作成

▶ 全粒径分布 : 宝永噴火について分析されたものはないため、同じ玄武岩質の伊豆大島1986年噴火の火山灰(TB-2テフラ)を対象に推定された全粒径分布の値(Mannen, 2006)をもとにしながら、最終層厚が宝永噴火に近づくよう調整。



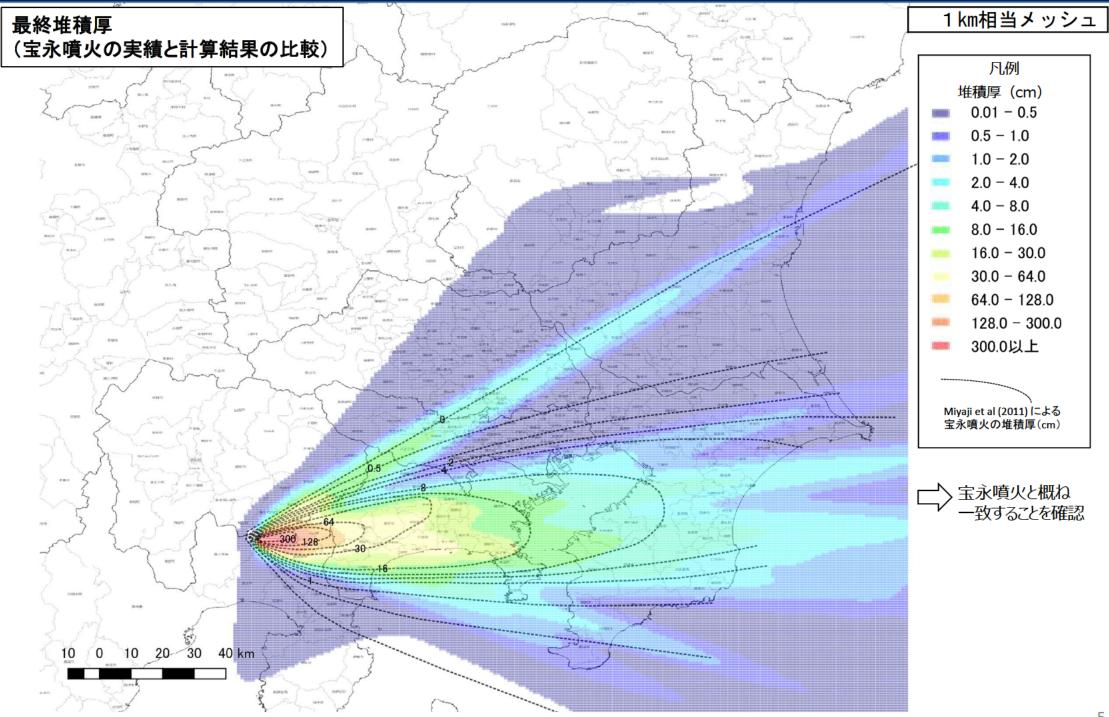
降灰シミュレーションの設定

▶ 噴煙柱の形状:改良版Tephra2により、火口から垂直に上昇する噴煙柱が、上空で風に流されて傾くと仮定して給源を設定。

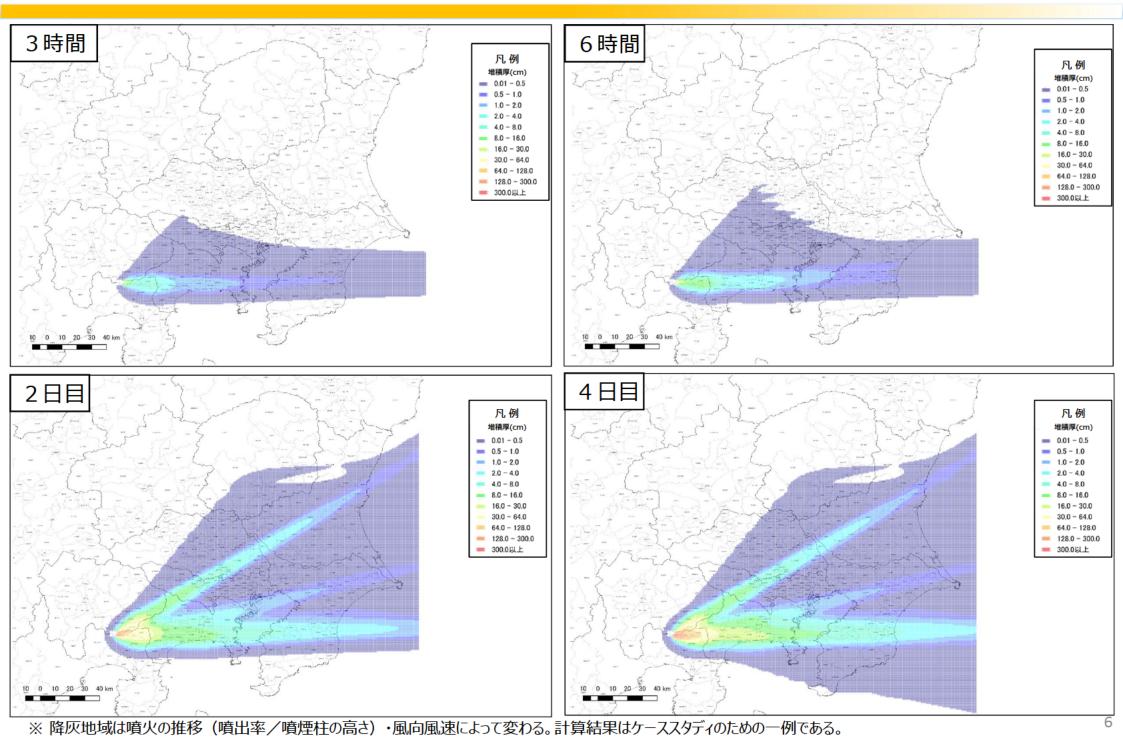
さらに、再現率向上のために、各噴火ユニットについて粗粒主体と細粒主体の2パターンのパラメータセットを 作成して計算を実施。

上空の風の風向の出現頻度

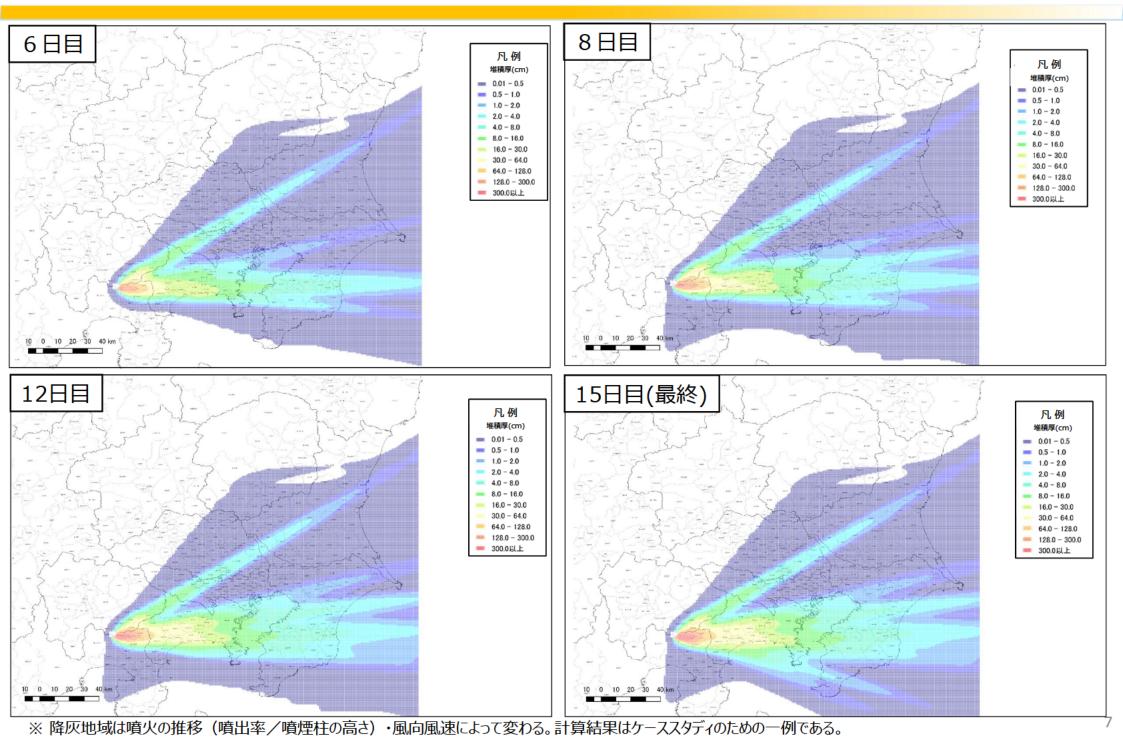
○上空の風の風向の出現頻度

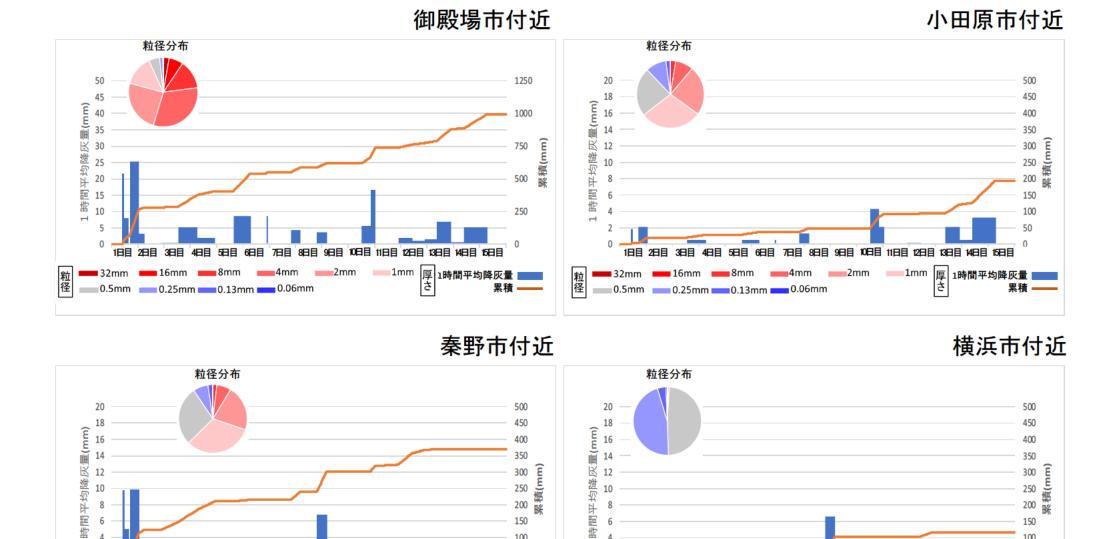

- ・大規模噴火時の降灰分布への影響が大きいと考えられる上空約10,000mと約5,000m付近における風向の出現頻度は、過去10年間の館野の高層観測データによると、南西~北西の占める割合が大きい($1\sim6$ 月、 $10\sim12$ 月は南西~北西方向が概ね9割を占めている。一方、 $7\sim9$ 月は南西~北西以外の風向が $2\sim3$ 割存在していて比較的ばらつきが大きい)。
- ・長期間降灰が継続し、降灰が厚くなる可能性は火口の東側で高い。

過去10年間の館野の指定気圧面の風向の割合


%						直公10年間の出まりの目に文に工田の強同の割日																		
		300hpa									500hpa													
月	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
北	0%	0%	0%	2%	2%	1%	6%	4%	1%	0%	0%	0%	0%	0%	0%	2%	2%	2%	3%	5%	1%	0%	0%	0%
北北東	0%	0%	0%	0%	1%	1%	2%	4%	0%	0%	0%	0%	0%	0%	1%	1%	2%	0%	1%	3%	1%	0%	0%	0%
北東	0%	0%	0%	1%	1%	0%	2%	3%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	3%	2%	0%	0%	0%	0%
東北東	0%	0%	0%	0%	0%	0%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%	1%	0%	2%	2%	0%	0%	0%	0%
東	0%	0%	0%	0%	0%	0%	1%	2%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	1%	0%	0%	0%
東南東	0%	0%	0%	0%	0%	0%	0%	1%	1%	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
南東	0%	0%	0%	0%	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	2%	0%	0%	0%
南南東	0%	0%	0%	0%	0%	0%	0%	2%	2%	0%	0%	0%	0%	0%	0%	0%	2%	2%	0%	2%	3%	0%	0%	0%
南	0%	0%	0%	0%	0%	1%	2%	3%	3%	0%	0%	0%	0%	0%	0%	0%	2%	2%	1%	3%	4%	1%	0%	0%
南南西	0%	0%	0%	0%	2%	0%	1%	4%	4%	3%	2%	0%	0%	1%	0%	1%	1%	1%	4%	4%	6%	3%	1%	1%
南西	2%	4%	6%	7%	10%	5%	10%	8%	13%	16%	7%	4%	4%	4%	7%	8%	10%	8%	11%	10%	13%	12%	9%	8%
西南西	21%	19%	23%	31%	29%	27%	17%	18%	30%	35%	35%	37%	17%	19%	27%	30%	22%	26%	20%	19%	26%	34%	32%	30%
西	61%	59%	51%	35%	36%	43%	23%	21%	28%	36%	45%	48%	48%	44%	39%	27%	32%	33%	24%	19%	28%	34%	44%	44%
西北西	14%	17%	15%	18%	10%	15%	13%	14%	9%	9%	9%	9%	24%	25%	18%	20%	13%	16%	11%	13%	8%	11%	9%	13%
北西	2%	1%	3%	4%	6%	3%	13%	8%	4%	2%	1%	1%	6%	5%	6%	7%	6%	6%	9%	8%	4%	3%	4%	3%
北北西	0%	0%	0%	2%	3%	2%	10%	8%	2%	1%	1%	0%	1%	0%	1%	2%	5%	2%	9%	7%	3%	1%	1%	0%
南西~北西	100%	99%	99%	95%	91%	93%	75%	69%	83%	97%	97%	100%	99%	97%	97%	92%	84%	89%	76%	68%	79%	94%	97%	98%

風向のデータは気象庁HP「過去の気象データ検索(高層) Iによる


計算結果(ケース1:西風卓越(宝永噴火に近いケース))


降灰の分布状況の時間変化(ケース1:西風卓越(宝永噴火に近いケース))①

降灰の分布状況の時間変化(ケース1:西風卓越(宝永噴火に近いケース))②

主な地域における降灰の状況(ケース1:西風卓越(宝永噴火に近いケース))①

K

間平均降

0.5mm 0.25mm 0.13mm 0.06mm

300

250

200 150

100

50

※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。

4日目 5日目 6日目 7日目 8日目 9日目 10日目 11日目 12日目 13日目 14日目 15日目

2mm

12

6

■32mm = 16mm = 8mm = 4mm

____0.5mm _____0.25mm _____0.13mm _____0.06mm

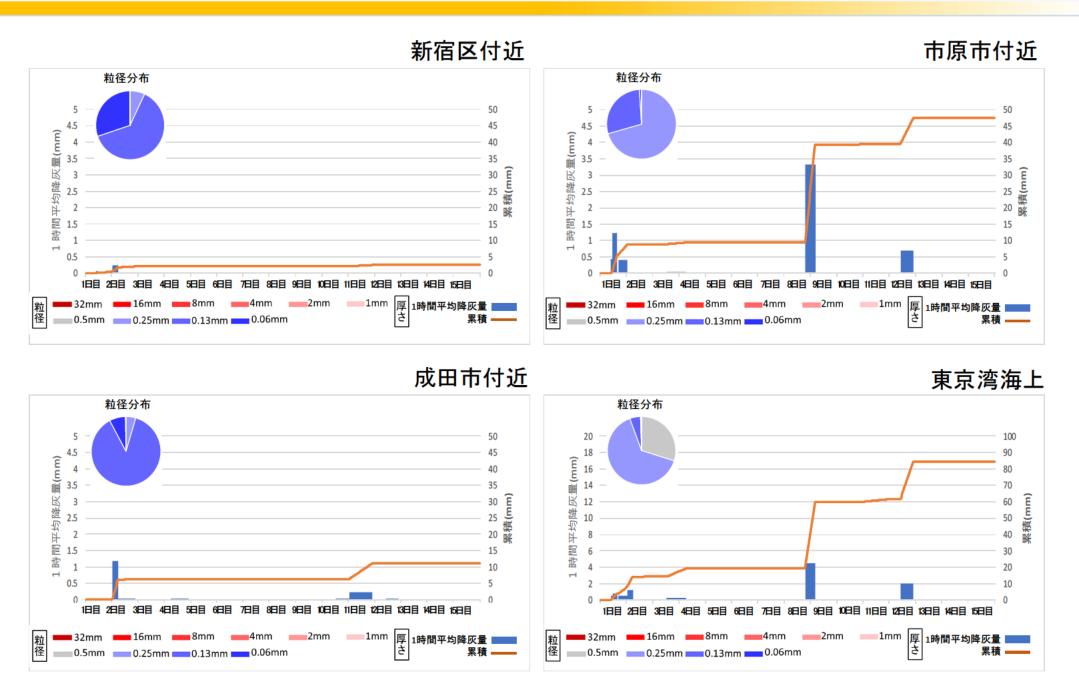
※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

1mm 厚 1時間平均降灰量 | 累積・

300

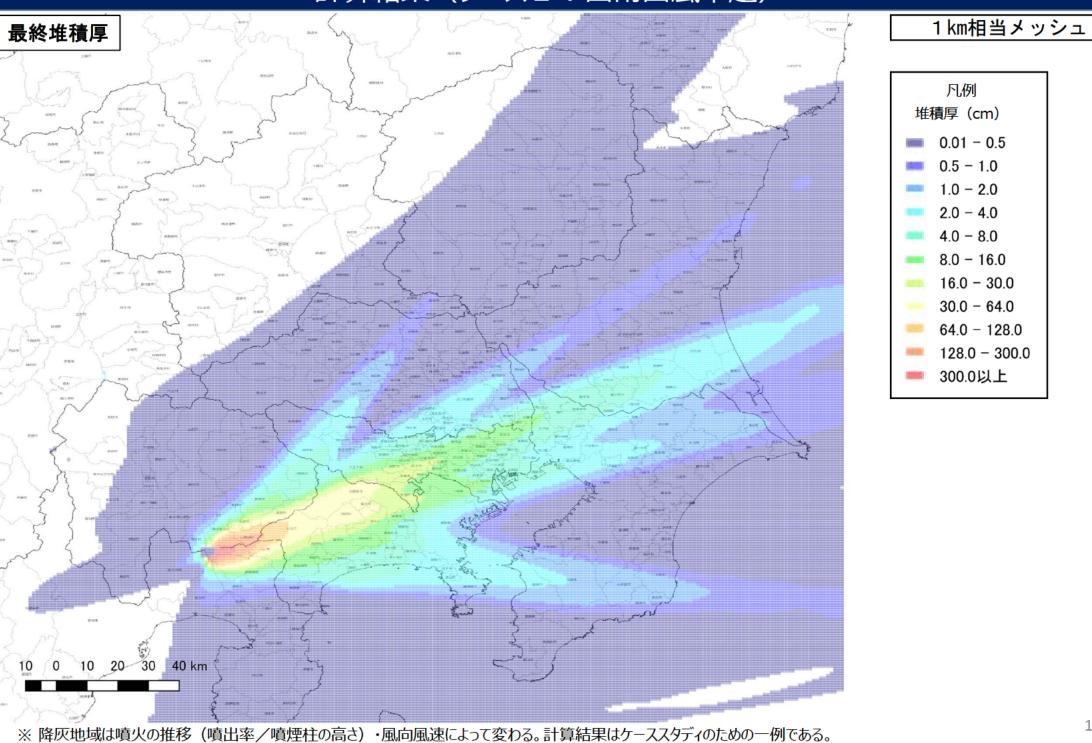
250 200

150

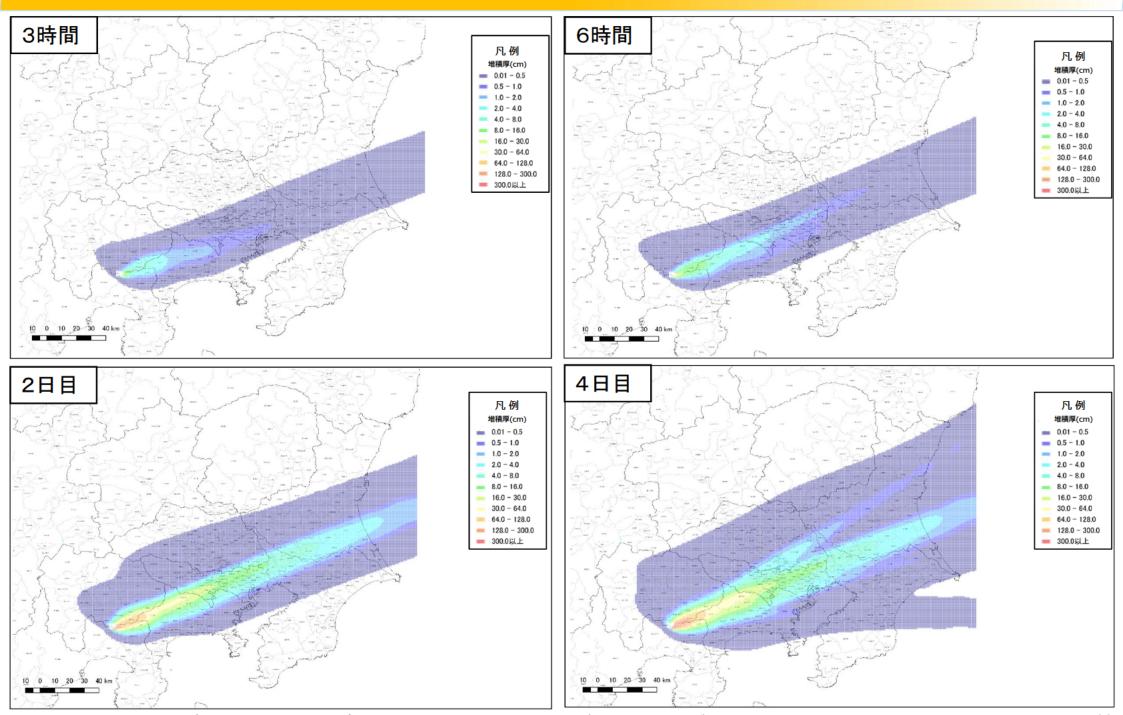

100

50

1mm 厚 1時間平均降灰量 累積

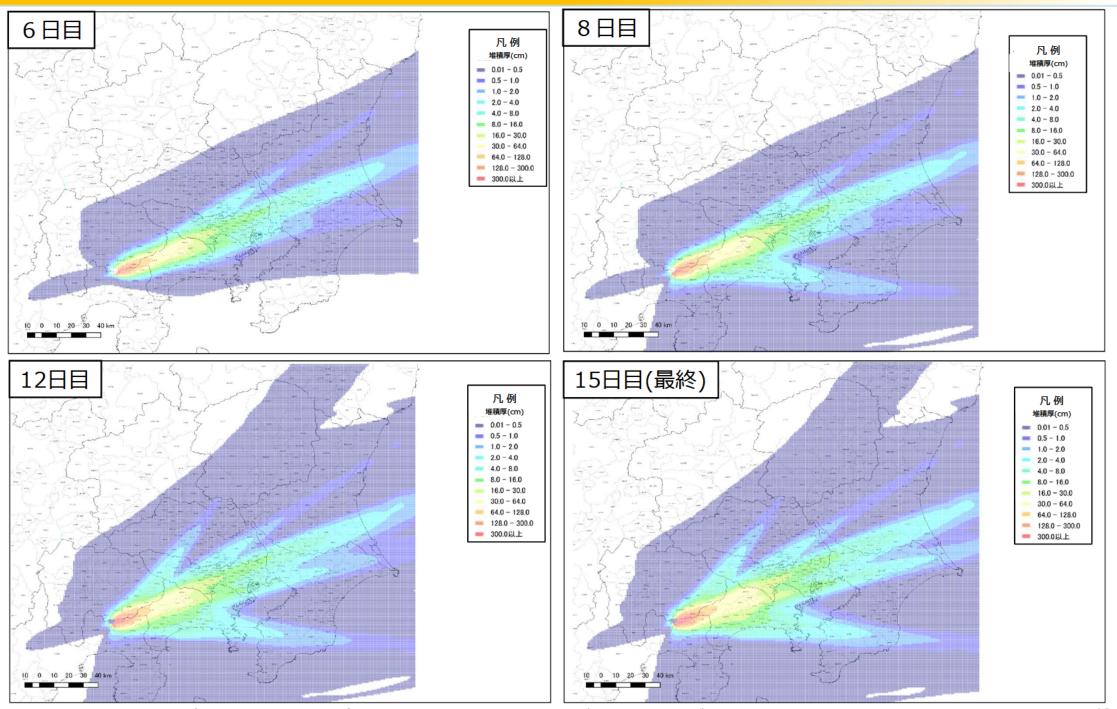

388 488 588 688 788 888 988 1088 1188 1288 1388 1488 1588

主な地域における降灰の状況(ケース1:西風卓越(宝永噴火に近いケース))②

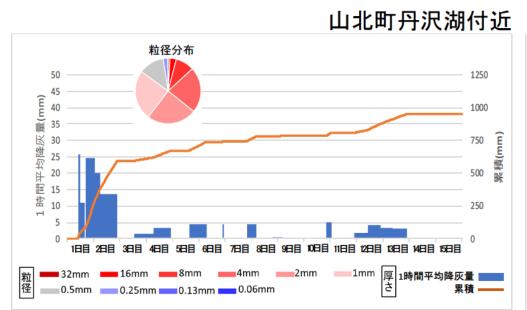


- ※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。
- ※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

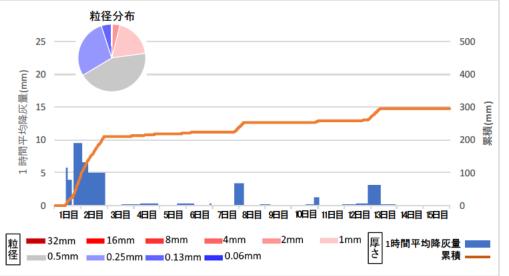
計算結果(ケース2:西南西風卓越)



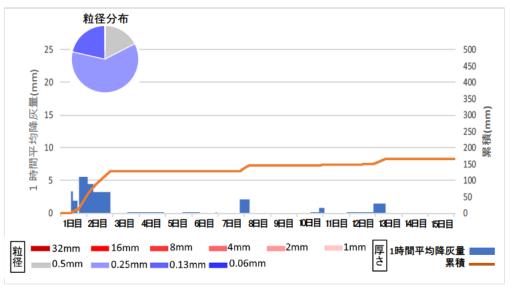
降灰の分布状況の時間変化(ケース2:西南西風卓越)①


※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

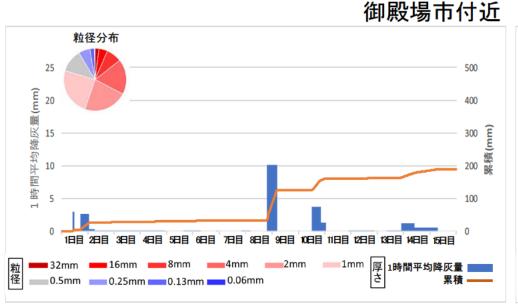
降灰の分布状況の時間変化(ケース2:西南西風卓越)②



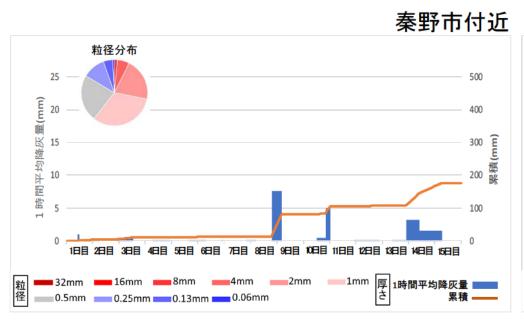
※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

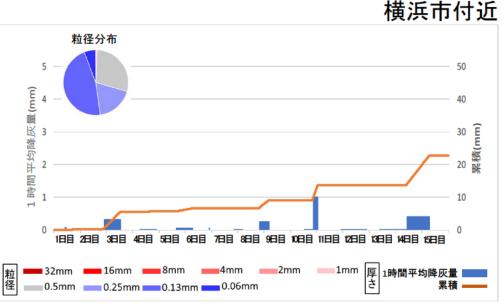

主な地域における降灰の状況(ケース2:西南西風卓越)①

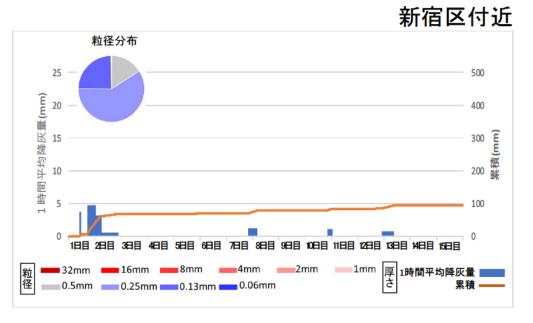
相模原市付近

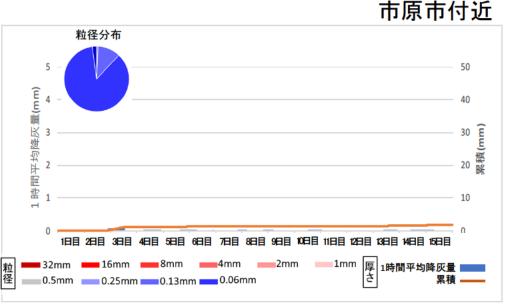


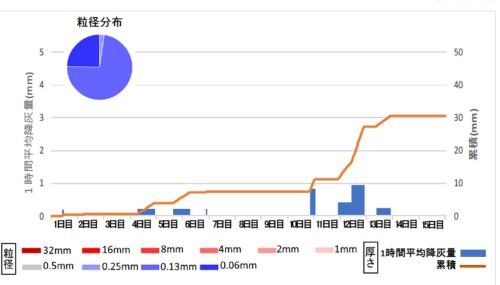
三鷹市付近

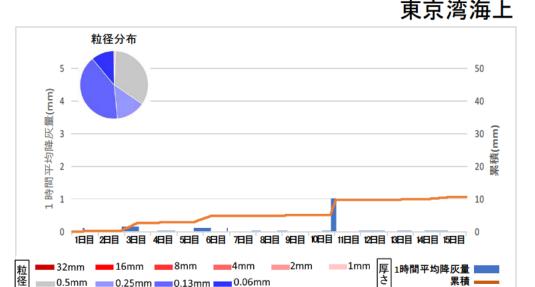

- ※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。
- ※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。


主な地域における降灰の状況(ケース2:西南西風卓越)②

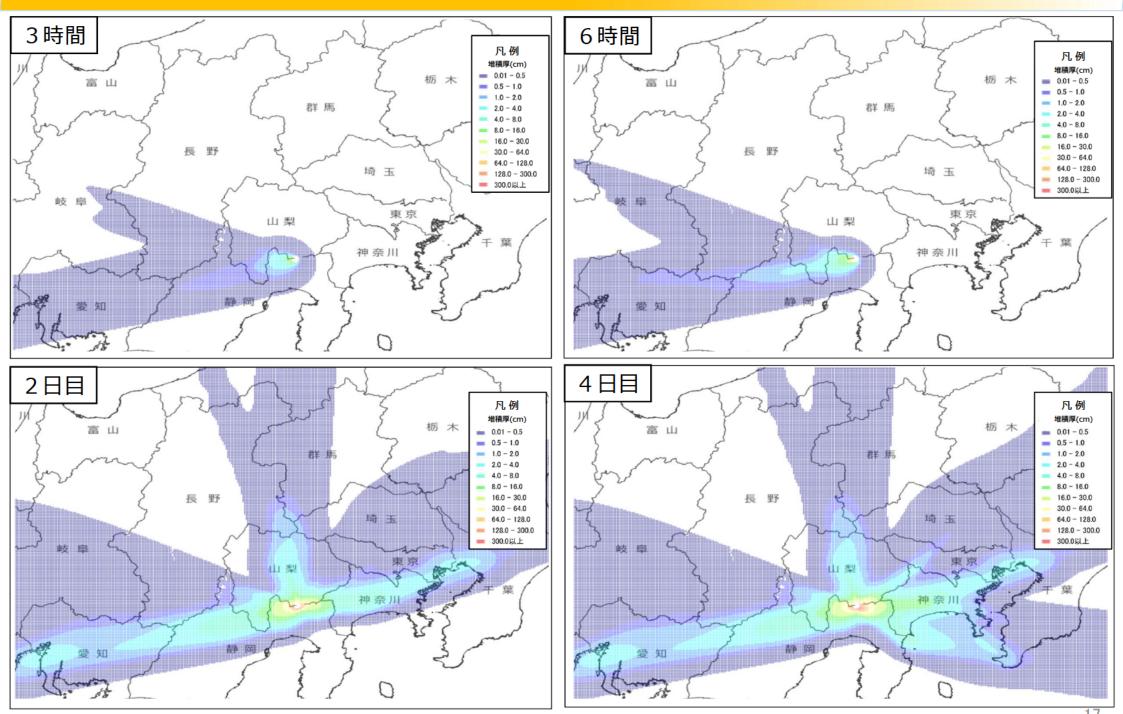

0.5mm 0.25mm 0.13mm 0.06mm




- ※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。
- ※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

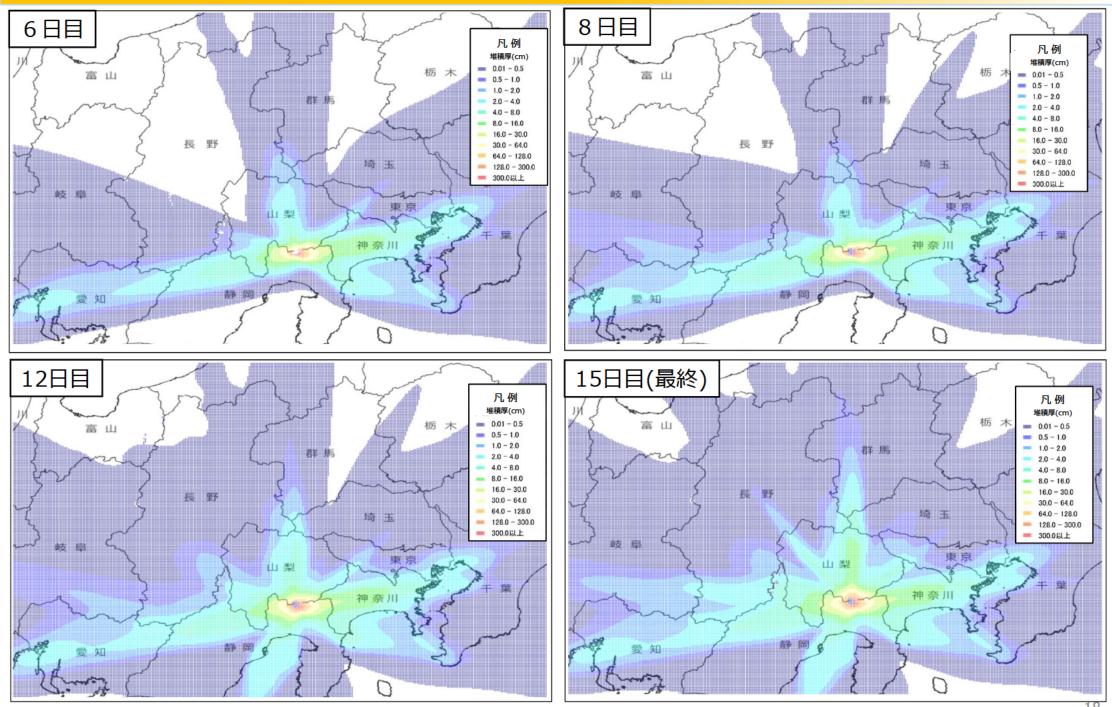

主な地域における降灰の状況(ケース2:西南西風卓越)③


成田市付近



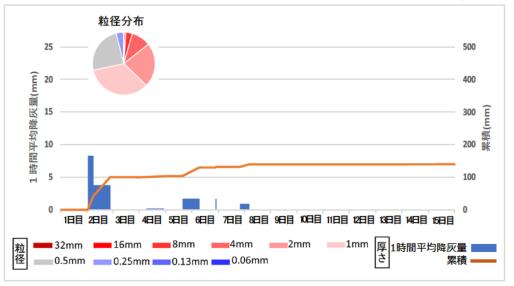
- ※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。
- ※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

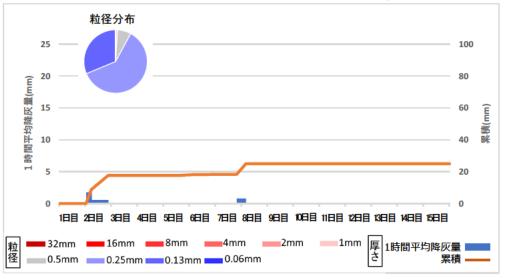
計算結果(ケース3:風向の変化が大きい南よりの風)



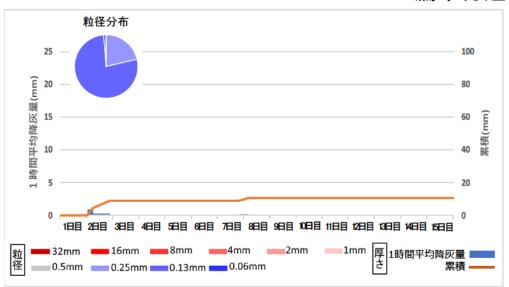
降灰の分布状況の時間変化(ケース3:風向の変化が大きい南よりの風)①

※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

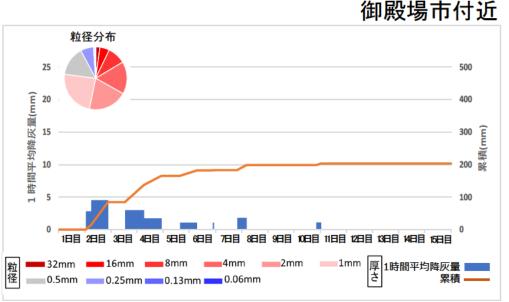

降灰の分布状況の時間変化(ケース3:風向の変化が大きい南よりの風)②

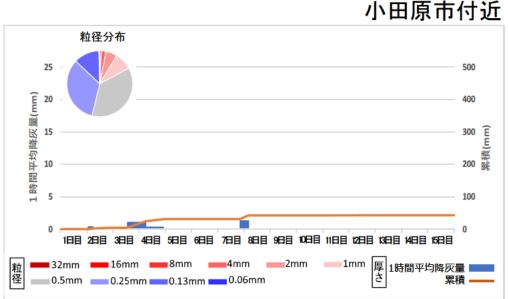

※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

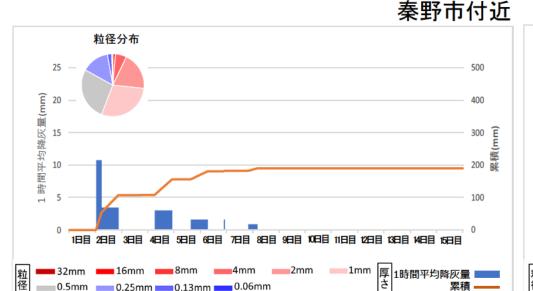
主な地域における降灰の状況(ケース3:風向の変化が大きい南よりの風)①

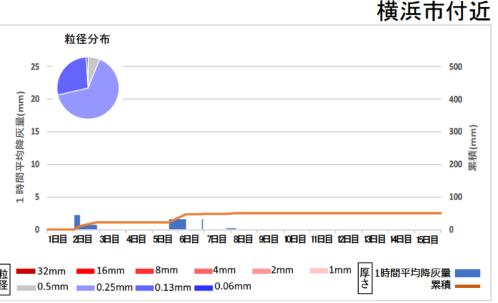

山北町丹沢湖付近

相模原市付近

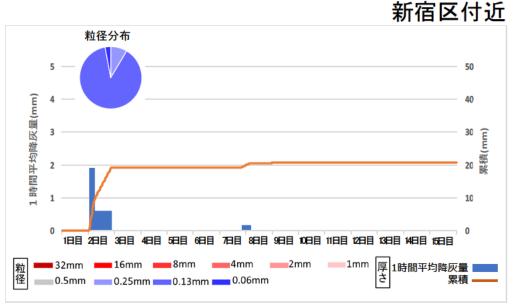


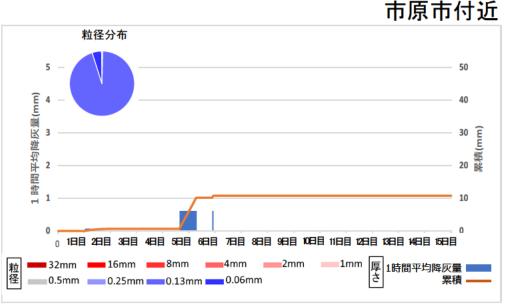

三鷹市付近



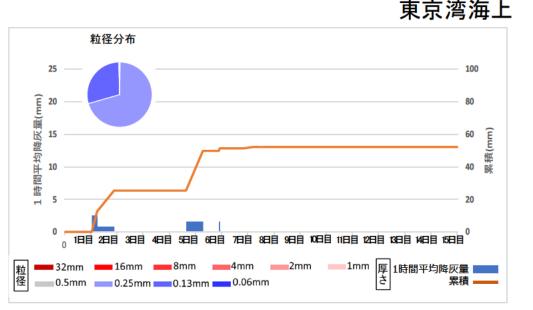

- ※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。
- ※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。

主な地域における降灰の状況(ケース3:風向の変化が大きい南よりの風)②





- ※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。
- ※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。


主な地域における降灰の状況(ケース3:風向の変化が大きい南よりの風)③

成田市付近

- ※ 1時間平均降灰量は、各噴火ユニット毎の堆積厚を噴火ユニットの継続時間で除算して、1時間平均降灰量を算出。
- ※ 降灰地域は噴火の推移(噴出率/噴煙柱の高さ)・風向風速によって変わる。計算結果はケーススタディのための一例である。