# 臨海コンビナートの耐震性

#### 早稻田大学 濱田 政則

#### (1) 液状化および側方流動に対する耐震性

(2) 長周期地震動に対する危険物・高圧ガス貯槽 の耐震性



### 神戸市御影浜タンクヤードの液状化 (1995年兵庫県南部地震)



#### 液状化地盤の流動 (1995年兵庫県南部地震,六甲アイランド北岸)



#### 地盤の流動による橋桁の落下と地割れ





# 液状化による危険物貯槽の傾斜と移動







#### 旧NHKビル基礎杭の被害(大成建設・河村氏提供)













#### 地盤の圧縮ひずみによる埋設管の座屈 (1964年新潟地震)

# 側方流動に関する研究

- (1) 側方流動による地盤変位(水平変位,沈下)の推定
  - ・ 側方流動発生のメカニズムの解明
  - ・ 地盤変位予測手法の開発

- (2) 側方流動に対する構造物の耐震設計法の構築
  - ・基礎構造の設計法(流動外力の評価,基礎の極限耐力)
  - ・ ライフライン埋設管路,地中構造物の設計法
  - ・既存構造物の側方流動に対する補強方法

### 埋立コンビナート地区側方流動予測の事例



### ボーリング地点と護岸位置のGIS表示





液状化層厚(水江地区)

#### 【予測結果】





#### 護岸および地盤の水平変位(水江地区)

#### 果 測 結 予



20

30

#### 地盤の沈下量(水江地区)

#### 長周期地震動による危険物・高圧ガス貯槽の被害





#### 1999年トルコ・コジャエリ地震



# 京葉臨海での想定長周期地震動



時間(sec)



 <u>解析条件</u>(東京大学地震研究所古村助教授による)
東南海地震,東海地震同時発生(M=8.2)
震源モデル: 東海地震;中央防災会議による 東南海地震;菊池による
関東平野の深い地盤構造: 基盤岩(D<sub>s</sub>=3km/s)より上を3次元にモデル化

| 浮き屋根式貯槽の液面上昇高の解析                                          |                                                                                                                                          |                    |                             |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|
| 2R<br>r                                                   | H:液面の高さ<br>2R:タンクの直径<br>g:重力加速度<br>$T_1$ :内容液のスロッシングの1次周期<br>$T_1 = 2\pi \sqrt{\frac{2R \times \coth(3.68 \times H/2R)}{3.68 \times g}}$ |                    |                             |
|                                                           |                                                                                                                                          |                    |                             |
| H                                                         | タンクの<br>直径<br>2R (m)                                                                                                                     | 液面の<br>高さ<br>H (m) | <b>固有</b><br>周期<br>T1 (sec) |
| ●                 ●             ●           ●           ● | 30                                                                                                                                       | 10                 | 6.2                         |
|                                                           | 30                                                                                                                                       | 20                 | 5.7                         |
|                                                           | 50                                                                                                                                       | 20                 | 7.8                         |
|                                                           | 50                                                                                                                                       | 30                 | 7.4                         |
|                                                           | 80                                                                                                                                       | 20                 | 10.9                        |
|                                                           | 80                                                                                                                                       | 30                 | 9.9                         |

# 京葉臨海コンビナート浮屋根式貯槽(総数288基)の 液面上昇高の事例



長周期地震動に対する構造物の耐震性 土木学会と建築学会による共同研究(平成15~17年) -

