資料6

中央防災会議

「日本海溝・千島海溝周辺海溝型地震に関する専門調査会」

北海道ワーキンググループ

(第3回)

プレート間地震の震源域の検討

(図表集)

平成16年11月22日

中央防災会議事務局

 図1-5 1952年・2003年十勝沖地震の観測震度より求めた震源距離を半径として描いた円 観測震度は、1952年及び2003年十勝沖地震の観測震度より抜粋し、当該地点のAVS30をもとに した速度増幅度を用いて工学的基盤における震度に換算。
 円の色は震度を表す。灰色の枠はこれらの円より想定した震源域。

 図1-6 経験式による震度分布。震源域を北東-南西方向に増減させた場合 Mw8.0 ディレクティビィティ+0.075
 左(縮小)、中(震源距離の円より求めた震源域)、右(拡張)

 図1-7 経験式による震度分布。震源域の北西端のみを増減させた場合 Mw8.0 ディレクティビィティ+0.075
 左(縮小)、中(震源距離の円より求めた震源域)、右(拡張)

 図1-8 経験式による震度分布。震源域の北端のみを増減させた場合 Mw8.0 ディレクティビィティ+0.075
 左(縮小)、中(震源距離の円より求めた震源域)、右(拡張)

(a) 波形記録からのインバージョン

(神田・武村(2004)による)

図1-9 1952年・2003年十勝沖地震のすべり量分布等の解析結果

断層	十勝沖地震3MPa	十勝沖地震3.5MPa	十勝沖地震4MPa	備考
気象庁マグニチュードM	-	-	-	
モーメントマグニチュードMw	8.2	8.2	8.3	logMo=1.5Mw+9.1
地震モーメントMo(Nm)	2.48E+21	2.90E+21	3.31E+21	$\Delta \sigma = 7 \pi^{1.5} / 16 \times M_0 / S^{1.5}$
マクロ的に見たパラメータ				
断層面積S(km ²)	15967	15967	15967	
S波速度Vs(km/s)	3.93	3.93	3.93	
平均密度 $\rho(g/cm^3)$	3.0	3.0	3.0	
■性率 ((N/m ²)	4.63E+10	4.63E+10	4.63E+10	$\mu = 0 \text{ Vs}^2$
平均的な応力パラメータ $\land \sigma(MPa)$	30	35	40	<u>ل</u> (1975)
平均すべり量D(m)	3.36	3.92	4 48	Mo= // DS
w读伝播速度Vr(km/s)	2.83	2.83	2.83	Vr=0.72Vs
Emax(Hz)	6	6	6	丘庫県南部地震の観測記録から推定された値
コーナー周波数fc(Hz)	0.019	0.018	0.017	$f_{0} = 4.9 \times 10^{6} V_{0} (\Lambda \sigma / M_{0})^{1/3}$
	3.63E+19	3.83E+19	4 00E+19	$\Lambda = M_0 \times (A_0 \times 10^6 \text{V}_0 (A_0 \times (M_0)^{1/3} \times 2\pi)^2$
	0.002110	0.002.113	4.002.113	$A = MO \times (4.9 \times 10^{\circ} VS(\Delta O / MO) \times 2 JC)$
	2250	2250	2250	S0.2 X S
アスペリティの総面積Sa(km)	5259	3239	3209	Sa=0.2 ^ 3 Do=D × 2.0 十勝油地雲4Do/D=2.2/tDo=D × 2.2
アスペリティズの松モーシントMoo(Nm)	1.01E±21	1 195+21	1 25E±21	Da-D ~ 2.0 1 册/干地展+Da/D-2.21&Da-D ~ 2.2 Maa= // DaSa
アスペリティの総広力パラメーク人 co(MDo)	12.2	1.102-21	1.332 121	$moa = \mu DaSa$
	13.3	10.0	17.7	$\Delta 0 a = 2.436 \text{Mo/S}$
	0.045	0.045	0.045	tca=4.9 × 10 ⁻ Vs(Δ σ a/Moa) ^{2/2}
短周期レベルAa(Nm/s ⁻)	8.25E+19	9.62E+19	1.10E+20	$Aa = Moa \times (4.9 \times 106 Vs (\Delta \sigma a/Moa))^{\circ} \times 2\pi)^{\circ}$
第1アスヘリティ				
アスペリティの面積Sa1(km [*])	2022	2022	2022	
要素数	87	80	80	
アスペリティ内の半均すべり量Da1(m)	8.08	9.43	10.78	$Moa1=\mu Da1Sa1$
アスペリティでのモーメントMoa1(Nm)	7.57E+20	8.83E+20	1.01E+21	Moa1=Moa×Sa1 ^{1.5} /ΣSai ^{1.5}
要素波形のモーメント(Nm)	9.67E+17	1.23E+18	1.40E+18	
アスペリティの応力パラメータΔ σa1(MPa)	20.3	23.7	27.1	$\Delta \sigma_{a1}=2.436 Moa1/Sa1^{1.5}$
コーナー周波数fca1(Hz)	0.058	0.058	0.058	$fca1=4.9 \times 10^{6} Vs(\Delta \sigma a1/Moa1)^{1/3}$
短周期レベルAa1(Nm/s ²)	9.93E+19	1.16E+20	1.32E+20	$Aa1=Moa1\times(4.9\times10^{6}Vs(\Delta\sigma a1/Moa1)^{1/3}\times2\pi)^{2}$
第2アスペリティ				
アスペリティの面積Sa2(km ²)	564	564	564	
要素数	23	23	23	
アスペリティ内の平均すべり量Da2(m)	4.27	4.98	5.69	Moa2= μ Da2Sa2
アスペリティでのモーメントMoa2(Nm)	1.12E+20	1.30E+20	1.49E+20	Moa2=Moa × Sa2 ^{1.5} / Σ Sai ^{1.5}
要素波形のモーメント(Nm)	9.70E+17	1.13E+18	1.29E+18	
アスペリティの応力パラメータΔ σ a2(MPa)	20.3	23.7	27.1	$\Delta \sigma$ a2=2.436Moa2/Sa2 ^{1.5}
コーナー周波数fca2(Hz)	0.109	0.109	0.109	$fca2=4.9 \times 10^{6} Vs(\Delta \sigma a2/Moa2)^{1/3}$
短周期レベルAa2(Nm/s ²)	5.24E+19	6.12E+19	6.99E+19	$Aa2=Moa2 \times (4.9 \times 10^{6} Vs(\Delta \sigma a2/Moa2)^{1/3} \times 2\pi)^{2}$
第3アスペリティ				
アスペリティの面積Sa3(km ²)	673	673	673	
要素数	25	25	25	
アスペリティ内の平均すべり量Da3(m)	4.66	5.44	6.22	Moa3= µ Da3Sa3
アスペリティでのモーメントMoa3(Nm)	1.45E+20	1.70E+20	1.94E+20	Moa3=Moa × Sa $3^{1.5}$ / Σ Sai ^{1.5}
要素波形のモーメント(Nm)	1.16E+18	1.36E+18	1.55E+18	
アスペリティの応力パラメータム σa3(MPa)	20.3	23.7	27.1	$\Lambda \sigma_{a3=2} 436 M_{0a3}/Sa3^{1.5}$
コーナー周波数fca3(Hz)	0 100	0 100	0 100	$f_{c_3} = 4.9 \times 10^6 \text{Ve} (\Lambda \sigma_{a_3}/\text{Moa}^3)^{1/3}$
「 毎月期」、ベルム。2(Nm/s ²)	5 73E+19	6.68E+19	7 64F+19	Δa^{2} = Moa ² × (4 9 × 10 ⁶ V/a ($\Delta \sigma a^{2}$ / Moa ²) ^{1/3} × 2 π) ²
查局预估 發展領估	0.702.10	0.002+10	7.012.10	
	12708	12709	12709	Sh=S-Sa
面積SD(KIII) 亜麦粉	525	516	516	55-5 Sa
女赤奴 地震エーン(hMab(Nm)	1 47E±21	1 72E+21	1 06E±21	Mah-Ma-Maa
要表は形のモーシント	1.4/C+21	1.72C+21	1.50E+21	
マスパルフロ レント すべり量Db(m)	2.132 17	1.4JL /1/ 2 01	1.00 - 17	Moh= // DhSh
7 17里00(III) 広力パラメニタ人 ch(MDa)	2.00	2.91	3.33	$A = -0.400 M_{\odot} / 0^{1.5}$
	2.0	2.9	3.3	$\Delta \cup D = 2.430 \text{ MO/S}$
	0.023	0.023	0.023	$TCD=4.9 \times IU VS(\Delta \mathcal{O} b/Mob)^{1/3}$
1短周期レベル(Nm/s ⁺)	3.07E+19	3.58E+19	4.09E+19	Ab=Mob × $(4.9 \times 10^{\circ} \text{Vs} (\Delta \sigma \text{b}/\text{Mob})''^{\circ} \times 2\pi)^{2}$

図1-10-1 波形計算による 1952 年・2003 年十勝沖地震の震度分布 Δσ=3MPa の場合 (Mw8.2)

図1-10-2 波形計算による1952年・2003年十勝沖地震の震度分布 Δσ=3.5MPaの場合(Mw8.2)

図1-10-3 波形計算による1952年・2003年十勝沖地震の震度分布 Δσ4MPaの場合(Mw8.3)

11-11 えりも地域の極地形によるAVS30と展及の検討 強震動試算において試算値が実績よりも大きくなるえりも地域において、 AVS30の値を一 σ 、平均、+ σ と変えて地表の震度を算出した

1973年根室沖地震の観測震度

○は気象庁による観測震度

□は後藤・太田(1974)による調査震度

図2-1 1973年根室半島沖地震の震度分布

円の色は震度を表す。灰色の枠はこれらの円より想定した震源域。

jma intensity

Mw7.8

144.0

142.0

40

140.0

Mw8.0

6強 6弱 5強

148.0

148.0

146.0

図2-4 経験的手法による 1973 年根室半島沖地震の震度分布
 上:根室沖 下:根室全域

148.0

146.0

図3-1 1894年根室沖地震の震度分布

1894年根室半島沖地震

速度増幅度を用いて工学的基盤における震度に換算。

円の色は震度を表す。灰色の枠はこれらの円より想定した震源域。

jma intensity

Mw7.8

Mw8.0

図4-1 1843年根室沖地震の震度分布

40

140.0

142.0

, 6 強弱 6 弱 6 弱 6 弱 6 弱 6 弱

4

。強 6弱 5強

148.0

146.0

5 1 3以下

148.0

146.0

144.0

Mw7.8

40

140.0

142.0

144.0

Mw8.0

図4-4 経験的手法による十勝沖、十勝沖-根室沖の各震源の震度分布

図5-1 1968年十勝沖地震の震度分布

図 5-3 経験的手法を用いた 1968 年十勝沖地震の震度分布 ディレクティビィティ+0.075(北緯 41.5 度以南)

表5-1 1968年十勝沖地震の再現計算の断層パラメータ

第4回専門調査会資料による

	⊿ σ 3MPa	⊿σ4MPa	
マグニチュードMjma	8.3	8.3	
地震モーメントMo(Nm)	3.19E+21	3.26E+21	
モーメントマグニチュードMw	8.3	8.3	
マクロ的に見たパラメータ			
断層面積S(km ²)	18866	15794	
S波速度Vs(km/s)	3.93	3.93	
平均密度 p (g/cm³)	3	3	
剛性率 $\mu(N/m^2)$	4.6E+10	4.6E+10	$\mu = \rho Vs^2$
平均的な応力パラメータ⊿σ(MPa)	3	4	
平均すべり量D(m)	3.65	4.45	Mo= µ DS
破壊伝播速度Vr(km/s)	2.8	2.8	Vr=0.72Vs
Fmax(Hz)	6	6	兵庫県南部地震の観測記録から推定された値
fc(Hz)	0.019	0.021	$fc=4.9 \times 10^6 Vs (\Delta \sigma / Mo)^{1/3}$
短周期レベルA(Nm/s ²)	4.48E+19	5.47E+19	$A=Mo \times (4.9 \times 10^{6} Vs (\varDelta \sigma/Mo)^{1/3} \times 2\pi)^{2}$
アスペリティ等内部パラメータ			
アスペリティの総面積Sa(km ²)	3838	3229	
アスペリティ内の平均すべり量Da(m)	7.34	8.95	Da=D × 2.01
アスペリティでの総モーメントMoa(Nm)	1.30E+21	1.34E+21	Moa= μ DaSa
アスペリティの総応力パラメータ⊿σa(MPa)	13.4	17.8	$\Delta \sigma = 2.436 M_{o}/S^{1.5}$
fc(Hz)	0.042	0.046	$fc=4.9 \times 10^{6} Vs (\Lambda \sigma a/Moa)^{1/3}$
短周期レベル(Nm/s ²)	9.01E+19	1.10E+20	$A=Moa \times (4.9 \times 10^6 \text{Vs}(\Lambda \sigma a/Moa)^{1/3} \times 2\pi)^2$
アスペリティ1の面積Sa1(km ²)	1158	929	
要素数		36	
アスペリティ1内の平均すべり量Da1(m)	6.95	8.28	Moa1= # Da1Sa1
アスペリティ1でのモーメントMoa1(Nm)	3.73E+20	3.56E+20	Moa1=Moa × Sa1 ^{1.5} / Σ Sai
アスペリティ1の応力パラメータ/σa1(MP	23.1	30.7	$1\sigma_{a1=2.436Mo/S^{1.5}}$
fca1(Hz)	0.076	0.085	$fc=4.9 \times 10^6 Vs (\Delta \sigma a/Moa)^{1/3}$
短周期レベル(Nm/s ²)	8.54E+19	1.02E+20	$A=Moa \times (4.9 \times 10^6 \text{Vs} (\Lambda \sigma a/Moa)^{1/3} \times 2\pi)^2$
アスペリティ2の面積Sa2(km ²)	1208	1080	
要素教		42	
アスペリティ2内の平均すべり量Da2(m)	7 10	8.93	Moa2= // DaSa
アスペリティ2でのモーメントMoa2(Nm)	3 97F+20	4 47F+20	Moa2=Moa X Sa $2^{1.5}/\Sigma$ Sai
アスペリティ2の応力パラメータイのa2(MP	23.1	30.7	$\int \sigma a^2 = 2.436 \text{Mo/S}^{1.5}$
fc(Hz)	0.075	0.079	$fc=4.9 \times 10^{6} Vs (\Lambda \sigma a / Moa)^{1/3}$
5000000000000000000000000000000000000	8 72F+19	1 10F+20	$A = M_{0a} \times (4.9 \times 10^{6} \text{Vs} (\Lambda \sigma_{a}/M_{0a})^{1/3} \times 2 \pi)^{2}$
アスペリティ3の面積Sa2(km ²)	1472	1220	
要素数		 	
アスペリティ3内の平均すべり量Da2(m)	7 84	9 49	Moa3= µ DaSa
アスペリティ3でのモーメントMoa2(Nm)	5.35F+20	5.36F+20	Moa3=Moa × Sa $2^{1.5}/\Sigma$ Sai
アスペリティ3の応力パラメータイのa2(MP	23.1	30.7	$\int \sigma a^2 = 2.436 \text{Mo/S}^{1.5}$
fc(Hz)	0.068	0.074	$fc=4.9 \times 10^6 Vs (\Lambda \sigma a/Moa)^{1/3}$
短周期レベル(Nm/s ²)	9.62F+19	1 17F+20	$A = M_{0a} \times (4.9 \times 10^{6} \text{Vs} (\Lambda \sigma_{a}/M_{0a})^{1/3} \times 2\pi)^{2}$
背景領域	0.022.10	, L · 20	
面積Sb(km ²)	15233	12566	
加限 また 地震 モーメントMob(Nm)	1 89F+21	1 92F+21	Mob=Mo-Moa
<u>すべり</u> 量Db(m)	2 67	3.30	Mob= // DbSb
<u> 、 シェンス</u> (MPa) 応力パラメータ $/\sigma b(MPa)$	2.07	3.3	$\Delta \sigma = 2.436 Mo/S^{1.5}$
fc(Hz)	0 021	0.023	$f_c = 4.9 \times 10^6 V_s (\Lambda \sigma b/Mob)^{1/3}$
短周期レベル(Nm/s ²)	3 28 - + 10	4 05E±10	$A=Mab \times (A \otimes 10^{6})/c (A \oplus (Mab)^{1/3} \times 2 \oplus)^{2}$