別冊①−2

南海トラフ沿いの過去地震の強震断層モデル (図表集)

平成27年12月

南海トラフの巨大地震モデル検討会

首都直下地震モデル検討会

1.	再現対象とした過去地震の震度データ	1
2.	過去地震の震度データ整理	8
3.	再現計算結果(震度分布)	. 11
4.	観測データと再現計算結果の比較	. 17
5.	強震波形計算条件のまとめ	. 58
6.	背景領域の計算例	. 64

図1-1. 中央防災会議(2003)ⁱで整理した震度分布(宝永地震)

図1-2. 今回検討対象とする震度分布(宝永地震)

図1-4. 今回検討対象とする震度分布(安政東海地震)

図1-5. 中央防災会議(2003)で整理した安政南海地震の震度分布

図1-6. 今回検討対象とする震度分布(安政南海地震)

図1-7. 中央防災会議(2003)で整理した昭和東南海地震の震度分布

図1-8.今回検討対象とする昭和東南海地震の震度分布

〇昭和南海地震

図1-9. 中央防災会議(2003)で整理した昭和南海地震の震度分布

図1-10.今回検討対象とする昭和南海地震の震度分布

図1-11.過去地震5地震の震度を重ね合わせた震度分布

図1-12.【参考】中央防災会議(2003)で整理した5地震の震度分布

図1-13. 今回検討対象とする震度分布図(再掲)

1. 過去地震の震度データ整理

再現対象の震度データは、集落全体の被害から推定したものや、寺社等の一つの建物で推定した ものなど、文献によって推定手法が様々である。また、寺社等は当時の場所と現在の場所が異なる 場合もある。このため、過去地震を再現する地震断層モデルの検討においては、収集した震度デー タ全体の分布図や、5kmメッシュ毎の中間値を代表値として設定した震度分布図も参考にした。

^{○:}主として中央防災会議(2003)で整理した震度データ

○:主として中央防災会議(2003)で整理された震度データ

□:中央防災会議(2003)以降に収集した震度データ △:代表震度

約 5km 間隔に集計した震度データ 代表震度は中央値(①)とした

○: 主として中央防災会議(2003)で整理された震度データ
図2-2. 震度データの集計(宝永地震における名古屋付近の例)

図2-3. 今回検討対象とする震度分布(約5km間隔で集計整理した震度)

2. 再現計算結果 (震度分布)

図3-1. 宝永地震の再現計算震度分布(震度増分µ(平均値)式)

図3-3. 安政東海地震の再現計算震度分布(震度増分µ(平均値)式)

図3-4. 安政東海地震の再現計算震度分布(震度増分 *μ* (平均値)式) (1km メッシュ内の平均震度)

図3-5. 安政南海地震の再現計算震度分布(震度増分µ(平均値)式)

図3-6. 安政南海地震の再現計算震度分布(震度増分µ(平均値)式) (1kmメッシュ内の平均震度)

図3-7. 昭和東南海地震の再現計算震度分布(震度増分µ(平均値)式)

(1kmメッシュ内の平均震度)

図3-9. 昭和南海地震の再現計算震度分布(震度増分µ(平均値)式)

(1km メッシュ内の平均震度)

図3-11.5地震重ね合わせの再現計算震度分布(震度増分µ(平均値)式)

図3-12.5地震重ね合わせの再現計算震度分布(震度増分 *μ*(平均値)式) (1km メッシュ内の平均震度)

3. 観測データと再現計算結果の比較

図4-3. 観測データとの比較(安政南海地震)

図4-5. 観測データとの比較(昭和南海地震)

(参考) 中央防災会議(2003)との比較

今回の5地震重ね合わせ震度

中央防災会議(2003) 東海・東南海・南海地震

図4-6. 今回計算と中央防災会議(2003)の比較

図4-7. 観測震度と計算震度の相関 左:今回計算 右;中央防災会議(2003)

左:今回計算 右:中央防災会議(2003)

4. 強震波形計算条件のまとめ

	中央防災会議(2003)	今回	南海トラフの巨大地
			震モデル検討会 ⁱⁱ
要素波形の	Boore(1983) ⁱⁱⁱ	佐藤・ほか(1994) ^{iv}	Boore (1983)
envelope			
Q 値(伝播過程)	東海:Q=100f ^{0.7}	Q=130f ^{0.77}	$100f^{0.7}$
	東南海・南海 : Q=130f ^{0.77}		
C 値	東海:2.8km	15km	18km
	東南海・南海 : 5.6km		
背景領域	波形計算有	波形計算なし	
		(震度値への影響が小	
		さいため)	
震度増分	微地形毎の AVS30 の値	微地形毎の AVS30	微地形毎の AVS30
(AVS30)	は一の式	の値はμ式	の値は一σ式

表5-1. 今回と過去の強震波形計算方法(統計的グリーン関数法)の比較表

経時特性の検討

図5-1. Boore (1983) と佐藤 (1998)の要素波形の比較 (震源距離 100 km)

図 5 - 2. Boore (1983) と佐藤 (1998)の要素波形の比較 (震源距離 500 km)

図5-3. Boore(1983)の経時特性による震度分布

図5-4.佐藤(1998)の経時特性による震度分布

図5-5. Boore (1983) の経時特性による震度の距離減衰

図5-6.佐藤(1998)の経時特性による震度の距離減衰

<u>C 値の検討</u>

強震断層域の広がりを考慮した地震波伝播の理論的考察によれば、強震動スペクトルは、断層に 近い場所では、断層からの距離が短くなることによる振幅の増幅は起きなくなる。即ち、断層近傍 では地震動の強さが飽和した状態となる。また、工学的基盤においても、強い地震波が入力した場 合には、弱い地震波に比べ減衰が大きくなる特性(非線形性)を持つことから、断層近傍での地震動の 増加は小さくなる傾向がある。

このため、中央防災会議でのこれまでの検討で用いた手法と同じく、震源直上等の震源域からの 距離が小さいところでは、経験的手法と同様、1/(R+C)[R:断層最短距離、C:定数]で地震波 の振幅が減衰するとして強震波形を計算し、地震動が震源近傍で飽和するようにした。ただし、Cは ある距離から徐々に減じ、一定の距離でゼロとなり、1/Rの距離減衰にスムーズにつながるように した。

このパラメータ C の値が適切でない場合には、震源近傍の震度を過小評価或いは過大評価することになる。本検討では、震源近傍の震度の減衰の様子が、距離減衰式による減衰の様子と概ね類似になるよう調整した。南海トラフの再現計算では C=15km を採用した。

5. 背景領域の計算例

図6-1. 強震動生成域のみで計算した場合

図6-2.背景領域を含めて計算した場合

図6-3. 強震動生成域のみで計算した場合の距離減衰

図6-4.背景領域を含めて計算した場合の距離減衰

	面積(km ²)		83,	771	
全休	地震モーメント	1 95+22			
	(Nm)	1.8E+22			
	Mw	8.8			
	セグメント	日向灘	南海	東南海	東海
セグメント	面積(km ²)	7,191	45,747	24,096	6,736
	平均応力降下量 (MPa)	3	3	3	3
	地震モーメント	7.5E+20	1.2E+22	4.6E+21	6.8E+20
	Mw	79	87	84	7.8
	副性率(Nm ²)	4 2F+10	4 2F+10	4 2F+10	4 2F+10
		910	6.014	4 295	516
	<u> </u>	510	0,014	4,200	510
SMGA	平均すべり量(m)	5.0	12.5	9.1	4.8
	面積比	13%	13%	18%	8%
	面積(km ²)	910.0	929.2	1,216.4	515.9
	平均すべり量(m)	8.8	8.9		6.7
SMGA①	地震モーメント (Nm)	3.4E+20	3.5E+20	5.2E+20	1.4E+20
	Mw	7.6	7.6	7.7	7.4
	応力パラメータ	30.0	30.0	30.0	30.0
	ライズタイム(s)	5.6	5.6	6.5	4.2
	面積(km ²)	-	2,061.1	914.1	0
	平均すべり量(m)	_	13.3	8.9	_
	地震モーメント (Nm)	_	1.2E+21	3.4E+20	-
SMGA(2)	Mw	_	80	7.6	_
	応力パラメータ (MPa)	_	30.0	30.0	-
	(IVIF a) ライズタイト(a)	_	8.4	5.6	_
	<u>ブイバアイム(3)</u> 西珪(l/m ²)	_	1 513 0	1 237 5	_
	<u> 画視(Kill)</u> 亚内すべけ景(m)		11.4	10.3	
	<u>十均9709里(11)</u> 地震モーメント		11.4	10.3	
SMGA3	心服で 7.21 (Nm)	_	7.2E+20	5.4E+20	-
	Mw	-	7.8	7.8	-
	応力パラメータ	-	30.0	30.0	-
	ライズタイム(s)	-	7.2	6.5	-
	面積(km ²)	-	1,510.9	926.5	-
	<u>平均すべり量(m)</u>	-	11.4	8.9	-
SMGA4	地震モーメント (Nm)	-	7.2E+20	3.5E+20	-
	Mw	-	7.8	7.6	_
	応力パラメータ	-	30.0	30.0	-
	ライズタイム(s)	-	7.2	5.6	_
背景領域	面積(km²)	6,281	39,733	19,802	6,220
	地震モーメント (Nm)	4.1E+20	9.1E+21	2.9E+21	5.4E+20
	Mw	77	8.6	82	78
	応力パラメータ	3.0	3.0	3.0	3.0
スのはい	破壊伝播速度	2.7	2.7	2.7	2.7
てのはか	fmax	6Hz	6Hz	6Hz	6Hz

表6-1. 宝永地震の再現計算(背景領域を含む場合)のパラメータ

※セグメントの地震モーメントは、セグメントの面積より算出

※背景の地震モーメントは、(セグメントの地震モーメント) - (SMGAの地震モーメント)

i東南海、南海地震等に関する専門調査会(第16回)

http://www.bousai.go.jp/kaigirep/chuobou/senmon/tounankai_nankaijishin/16/inde x.html

ii南海トラフの巨大地震モデル検討会

(http://www.bousai.go.jp/jishin/nankai/model/index.html)

ⁱⁱⁱ 9). Boore, D.M.(1983) : Stochastic simulation of high-frequency ground motions based on seismoogical models of the radiated spectra, Bull. Seism. Soc. Am., 73, 1865-1894.

iv 12). 佐藤智美・川瀬博・佐藤俊明(1994):ボアホール観測記録を用いた表層地盤同 定手法による工学的基盤波の推定及びその統計的特性,日本建築学会構造系論文 集,No.461,pp.19-28.