資料2-2

中央防災会議「首都直下地震対策専門調査会」

(第12回)

地震ワーキンググループ報告書(図表集)

平成16年11月17日

地震ワーキンググループ

図 1.1 首都地域等の位置図

直下地震の切迫性

南関東では、2~3百年間隔で発生する関東大震災クラスの地震の間に、マグニチュード7クラ スの直下型地震が数回発生する。大都市直下で発生した場合、多大な被害が生じる

首都直下地震対策専門調査会(第1回)資料

首都直下では海側からフィリピン海プレート、太平洋プレートが陸の北米プレートの下に沈み込ん でいるため、地震の発生の様相は極めて多様である。地震発生様式を分類すると下の5つのタイプに 分類される。

- (1)地殻内の浅い地震
- (2)フィリピン海プレートと北米プレートとの境界の地震
- (3)フィリピン海プレート内の地震
- (4)フィリピン海プレートと太平洋プレートとの境界の地震
- (5)太平洋プレート内の地震

図 2.0.2 首都直下で発生する地震のタイプ

図 2.0.3 対象とする地震のタイプ

表 3.0.1 今回検討対象とした地震

	予防対策の対象と	応急対策の対象とする地震				
	する地震()	都心部()	都心部周辺()			
(1)地殻内の浅い地震(深さ数㎞から約20㎞)	 (1)-1 M 7 以上の活断層 関東平野北西縁 断層帯 立川断層帯 伊勢原断層帯 神縄・国府津 - 松田断層帯 三浦半島断層群 (1)-2 全ての地点(M = 6.9) 深さ 5km 基本 として地震基盤が 深いところでは地 	 (1)-2 首都機能に影響 が大きいと考え られる数地点 (M = 6.9) 都心東部(霞 が関)直下 都心西部(東 京都庁)直下 	 (1)-1 立川断層、三浦半島断層群など、中核都市、交通網、ライフ ラインに影響を与える断層 関東平野北西縁断層帯 立川断層帯 伊勢原断層帯 神縄・国府津 - 松田断層帯 三浦半島断層群 (1)-2 中核都市、空港、コンビナート等に影響を与える地点の直下 (M = 6.9) さいたま市直下 千葉市直下 川崎市直下 横浜市直下 立川直下(多摩地域) 			
	震基盤 + 2km		羽田空港直下 市原市直下 成田空港直下			
(深さ約 20 ほから約 60 ほ)	(2) Ishida(1992)のフ ィリピン海プレー ト形状に基づいて プレートの上面 (19断層面の領 域)に断層を設定 (M=7.3)	 (2) 左記プレート上 面の相対的に地 震発生の可能性 が高い7断層面 のうちの2断層 面の領域(M = 7.3) 東京湾北部 	(2) 左記プレート上面7断層面のうちの都心部以外の5断層面の 領域 (M = 7.3) 茨城県南部 多摩			
③フィ リピン海プレー ト内の地震(深さ約 20 ㎞から約 70 ㎞)		(3) 上記の2断層面 より深いところ での断層 (M = 7.3) 東京湾北部	(3) 上記の5断層面より深いところでの断層 (M = 7.3) 茨城県南部 多摩			

図 3.0.1 対象とする地震

治断層	長さ	Mjma	Mw	上端家さ	下端家さ	鶞觕	すべり角
関東平野北西線湖層帯	26km	7.2	6.9	5km	18km	45 °	90°
立ちて	33km	7.3	7.0	5km	18km	80 °	60°
伊勢原断層帯	21km	7.0	6.7	5.3km	18km	60°	90°
神縄・国府津 - 松田断層帯	42km	7.5	7.2	陸或5km	18km	45°	90°
				海或7.7km			
三浦半島新會群主部	28km	7.2	6.9	6.5km	18km	45°	180°

気象庁マグニチュード(Mjma)は、断層の長さから松田の式により求めた。モーメントマグニチ ュード(Mw)は、回帰式により Mjma から換算した。

Mw=0.879 × Mjma + 0.536

断層上端の深さは、微小地震分布を参照し、深さ 5km を基本とし、Vs=3,500m/s となる深さが 5km より深い場合はその深さとした。Vs=3,500m/s となる深さは、Vs=3,000m/s 層の上面深さ + 2km とした。

断層の下端は、微小地震分布および自然地震を用いたトモグラフィー結果(Zhao et al., 1994)を 参照し、深さ18km とした。

図 3.1.1 検討対象とするM7 以上の活断層の位置(赤太線)

図 3.1.4 気象庁による震源分布(1997 年~2003 年、深さ0~30km、夜間のみ) 濃い青の実線は地震基盤(Vs=3,000m/s)、 薄い青の実線は地震基盤+2km。 黒の実線と断面図の茶色印は活断層位置。

プレート上面深さ				
80 -	90(km)			
70 -	80			
60 -	70			
50 -	60			
40 -	50			
30 -	40			
20 -	30			
10 -	20			
5 -	10			
0 -	5			

3.1.5	プレート上面の深さ分布	
	(Ishida(1992)による)	

図 3.2.2 フィリピン海プレート上面付近の19枚の断層についての知見の整理 (第1回岡田委員提供資料をもとに作成)

表 4.1.1 強震動の推計手法の適用

	】経験的な手法 】統計的グリーン関数法による波形	計算			
	予防対策の対象とする地震	応急対策の対象とする地震			
	()	都心部()	都心部周辺()		
(1) ^{深さ}	(1)-1 M7以上の活断層 関東平野北西縁断層帯 立川断層帯 伊勢原断層帯 神縄・国府津-松田断層帯 三浦半島断層群		(1)-1 中核都市、交通網、ライフ ライン等に影響を与える断層 (M7以上) 関東平野北西縁断層帯 立川断層帯 伊勢原断層帯 神縄・国府津 - 松田断層帯 三浦半島断層群		
放内の浅い地震 (数kmから約20km)	(1)-2 全ての地点 (M = 6.9) 深さ5km基本として地震基 盤が深いところでは地震基盤 + 2km	(1)-2 首都機能に影響が大きいと 考えられる2地点 (M = 6.9) 都心東部(霞が関)直下 都心西部(東京都庁)直下	(1)-2 中核都市、空港、コンビ ナート等に影響を与える地点 の直下 (M = 6.9) さいたま市直下 千葉市直下 千葉市直下 横浜市直下 支川直下(多摩地域) 羽田空港直下 市原市直下 成田空港直下		
(2)	(2)	(M=6.9)	(2)		
フィ リピン海プレート と北米プレートとの 深さ(約20mから約60m)	Ishida(1992)のフィリピン 海プレート形状に基づいてプ レートの上面(19断層面の領 域)に断層を設定 (M=7.3)	都心東部(霞が関)直下	左記プレート上面7断層面 のうちの都心部以外の5断層 面の領域 (M = 7.3) 茨城県南部 多摩		
(3) プレート内の地震 パロー約70km)		都心西部(東京都庁) 直下 上記の2断層面より深いと ころでの断層 (M=7.3) 東京湾北部	(3) > 対象から除外 上記の 5 断層面より深いと ころでの断層 (M = 7.3) 茨城県南部 多摩		

左上:位相速度,右上:S波增幅率,左下:速度構造

修正前

図 4.1.12 修正した 1km メッシュ震度増分(左)と従来の 1km メッシュ震度増分(右)

図 4.1.13 修正した 1km メッシュ震度増分(左)と50m メッシュ震度増分(右)

表 4.2.1 都心東部直下と都心西部直下の地震の断層パラメータリス

断層	都心東部	都心西部	
緯度(°)	35.590	35.603	
経度(°)	139.792	139.732	
上端深さd(km)	6	6	
長さL(km)	17.38	17.38	logL=0.6M-2.9
幅W(km)	11.22	11.22	
走向	315	315	
傾斜 (°)	45	45	
すべり角 (°)	90	90	
マグニチュードM	6.9	6.9	活断層が確実に現れるMは6.9より大きいことから設定
地震モーメントMo(Nm)	1.00E+19	1.00E+19	logMo=1.5Mw+16.1(金森)
モーメントマグニチュードMw	6.6	6.6	Mw=0.879M + 0.536
マクロ的に見たパラメータ			
断層面積S(km²)	195	195	logS=1/2logMo-10.71
S波速度Vs(km/s)	3.5	3.5	地殻内の平均的値
平均密度 (g/cm ³)	2.8	2.8	地殻内の平均的値
剛性率 μ (N/m ²)	3.4E+10	3.4E+10	$\mu = Vs^2$
平均的な応力パラメータ (MPa)	3	3	平均的な値
平均すべり量D(m)	1.50	1.50	Mo= µ DS
破壊伝播速度Vr(km/s)	2.5	2.5	Vr=0.72Vs
要素断層の大きさ(km)	2.1X1.4	2.1X1.4	
C(km)	8.0	8.0	
Fmax(Hz)	6	6	兵庫県南部地震の観測記録から推定された値
fc(Hz)	0.115	0.115	$fc=4.9 \times 10^6 Vs ($ /Mo $)^{1/3}$
短周期レベルA(Nm/s ²)	5.20E+18	5.20E+18	A=Mo × $(4.9 \times 10^{6}$ Vs $(/Mo)^{1/3} \times 2)^{2}$
アスペリティ等内部パラメータ			
アスペリティの総面積Sa(km ²)	49	49	Sa=S × 0.22
アスペリティ内の平均すべり量Da(m)	2.99	2.99	Da=D × 2.01
アスペリティでの総モーメントMoa(Nm)	4.00E+18	4.00E+18	Moa= µ DaSa
要素断層の平均モーメント(Nm)	2.41E+17	2.41E+17	
アスペリティの総応力パラメータ a(MPa)	12.0	12.0	a= ×S/Sa
fc(Hz)	0.247	0.247	fc=4.9 × 10 ⁶ Vs(a/Moa) ^{1/3}
短周期レベル(Nm/s ²)	9.66E+18	9.66E+18	A=Moa × $(4.9 \times 10^{6}$ Vs $(a/Moa)^{1/3} \times 2)^{2}$
背景領域			
面積Sb(km ²)	146	146	Sb=S-Sa
地震モーメントMob(Nm)	6.00E+18	6.00E+18	Mob=Mo-Moa
要素断層の平均モーメント(Nm)	1.21E+17	1.21E+17	
すべり量Db(m)	1.20	1.20	Mob= µ DbSb
応力パラメータ b(MPa)	2.4	2.4	b=0.2 a
fc(Hz)	0.126	0.126	$fc=4.9 \times 10^6 Vs(b/Mob)^{1/3}$
短周期レベル(Nm/s ²)	3.78E+18	3.78E+18	A=Mob × $(4.9 \times 10^{6}$ Vs $(b/Mob)^{1/3} \times 2)^{2}$

断層帯	プレート境界地震	
緯度(°)	35.3200	
経度(°)	140.1400	
上端深さd(km)		
長さL(km)	63.64	
幅W(km)	31.82	
·····································	206	
	230	
	23	
	138	
マクニチュードMjma	7.3	
地震モーメントMo(Nm)	1.12E+20	logMo=1.5Mw+16.1(金森)
モーメントマグニチュードMw	7.3	
マクロ的に見たパラメータ		
断層面積S(km ²)	2025	$=7^{1.5}/16 \times Mo/S^{1.5}$
S波速度Vs(km/s)	3.5	地殻内の平均的値
	28	地設内の平均的値
	2.0	
	3.4±+10	µ= vs
	3	N. D0
<u>半均すべり量D(m)</u>	1.62	Mo= µ DS
破壊伝播速度Vr(km/s)	2.5	Vr=0.72Vs
要素断層の大きさ(km)	5.0X5.0	
要素断層の数(アスペリティ)	18	
要素断層の数(背景領域)	63	
C(km)	2.8	
Emax(Hz)	6	兵庫県南部地震の観測記録から推定された値
fc(Hz)	0.051	$f_{c-4.9 \times 10^6 \text{ //s}} (/M_{o})^{1/3}$
<u>に(())</u> 「「月期」が II.A (Nm / c ²)	1 165 10	$(4 - M_0)^{1/3} \times (4 - M_0)^$
	1.102+19	$A = MO \times (4.9 \times 10^{\circ} VS(/ MO) \times 2^{\circ})$
アスペリティの総面積Sa(km ²)	450	Sa=S × 0.22
アスペリティ内の平均すべり量Da(m)	3.23	Da=D × 2.01
アスペリティでの総モーメントMoa(Nm)	4.99E+19	Moa= µ DaSa
要素断層の平均モーメント(Nm)		
アスペリティの総応力パラメータ a(MPa)	12.7	=2.436Mo/S ^{1.5}
fc(Hz)	0.109	$fc=4.9 \times 10^6 Vs(a/Moa)^{1/3}$
(い) 短周期レベル(Nm/s ²)	2 33E+19	$\Delta - Moa \times (4.9 \times 10^6)/s(a = 2/Moa)^{1/3} \times 2^{-1})^2$
$(\nabla \neg \wedge U = 1)$	2.002110	
(f X (f J 1)) フスペリティ(の松西穂0-4/4m ²)	005	0-4 0 0.00
	325	Sa1=5 × 0.22
アムペリティ1内の平均 g ペリ量Da1(m)	3.61	Moa1= µ Da1Sa1
アスペリティ1での総モーメントMoa1(Nm)	4.03E+19	Moa1=Moa × Sa1 ¹³ / Sai
アスペリティ1の要素断層の平均モーメント(Nm)	3.10E+18	
アスペリティ1の総応力パラメータ a1(MPa)	16.7	a1=2.436Mo/S ^{1.5}
fca1(Hz)	0.128	$fc=4.9 \times 10^6 Vs(a/Moa)^{1/3}$
短周期レベル(Nm/s ²)	2 60F+19	$A = M_{02} \times (4.9 \times 10^6 \text{Vs} (2.0 \text{ a}/M_{02})^{1/3} \times 2)^2$
$(\nabla \mathbf{Z} \wedge \mathbf{U} + \mathbf{Z})$	2.002110	
(7,7,7,7,7,7,7) ファペリニンの松西巷 Co2(lm^2)	105	Sec. S. 40.22
デスペリテ1200総回視Sd2(KIII)	123	
	2.24	$Moa2 = \mu DaSa$
アスペリティ2での総モーメントMoa2(Nm)	9.60E+18	Moa2=Moa × Sa2 ¹⁰ / Sai
アスペリティ2の要素断層の平均モーメント(Nm)	1.92E+18	
アスペリティ2の総応力パラメータ a2(MPa)	16.7	a2=2.436Mo/S ^{1.5}
fc(Hz)	0.206	fc=4.9 × 10 ⁶ Vs(a/Moa) ^{1/3}
短周期レベル(Nm/s ²)	1 62F+19	$A = M_{02} \times (4.9 \times 10^6 \text{Vs} (2.0 \text{ a}/M_{02})^{1/3} \times 2)^2$
	1.022110	
西廷(h/m ²)	1676	Sh S Sa
回復SU(KIII) 地雷エーバン(Mak/Mar)	10/0	
	6.23E+19	IVIOD=IVIO-IVIOa
要系断層の半均セーメント(Nm)	9.89E+17	
すべり量Db(m)	1.15	Mob= µ DbSb
応力パラメータ b(MPa)	2.4	=2.436Mo/S ^{1.5}
fc(Hz)	0.058	$fc=4.9 \times 10^{6} Vs($ b/Mob) ^{1/3}
短周期レベル(Nm/s ²)	8.32E+18	A=Mob × $(4.9 \times 10^6 \text{Vs}(b/\text{Mob})^{1/3} \times 2)^2$

表 4.2.2 東京湾北部直下のプレート境界地震の断層パラメータリスト

横軸は断層最短距離(km)。 都心部に小さいアスペリティがある場合。 曲線は経験式による計測震度の距離減衰で、表層平均 S 波 速度(AVS30)が 150m/s、300m/s の場合を示す。

表 4.2.3 東京湾北部直下のプレート内地震の断層パラメータリスト

断層帯	プレート内	
緯度(°)	35.546	
経度(°)	140.017	
上端深さd(km)	45	
長さL(km)	54.53	logL=0.5Mjma-1.88
幅W(km)	26.41	
走向	300	
傾斜 (°)	90	
<u>すべり角 (°)</u>	-90	
マグニチュードMjma	7.2	logMo=1.5Mjma+16.2
地震モーメントMo(Nm)	1.12E+20	logMo=1.5Mw+16.1(金森)
モーメントマグニチュードMw	7.3	
マクロ的に見たパラメータ		
断層面積S(km ²)	1440	$=7^{1.5}/16 \times MO/S^{1.5}$
S波速度Vs(km/s)	3.5	地殻内の平均的値
平均密度 (g/cm ³)	2.8	地殻内の平均的値
剛性率 µ (N/m²)	3.4E+10	$\mu = Vs^2$
平均的な応力パラメータ (MPa)	5	
平均すべり量D(m)	2.27	Mo= u DS
破壊伝播速度Vr(km/s)	2.5	Vr=0.72Vs
要素断層の大きさ(km)	2.0X2.0	
要素断層の数(アスペリティ)	77	
要素断層の数(背景領域)	274	
C(km)	2.8	
Fmax(Hz)	6	兵庫県南部地震の観測記録から推定された値
fc(Hz)	0.061	fc=4.9 × 10 ⁶ Vs(/Mo) ^{1/3}
短周期レベルA(Nm/s ²)	1.64E+19	$A=Mo \times (4.9 \times 10^{6} Vs(/Mo)^{1/3} \times 2)^{2}$
アスペリティ等内部パラメータ		
アスペリティの総面積Sa(km ²)	316	Sa=S x 0.22
アスペリティ内の平均すべり量Da(m)	4.56	$Da=D \times 2.01$
アスペリティでの総モーメントMoa(Nm)	4.95E+19	Moa= µ DaSa
要素断層の平均モーメント	6.26E+17	
アスペリティの総応力パラメータ a(MPa)	21.5	=2.436Mo/S ^{1.5}
fc(Hz)	0.130	$fc=4.9 \times 10^{6} Vs(a/Moa)^{1/3}$
短周期レベル(Nm/s ²)	3.29E+19	A=Moa × $(4.9 \times 10^{6}$ Vs $(a/Moa)^{1/3} \times 2)^{2}$
背景領域		
面積Sb(km ²)	1124	Sb=S-Sa
地震モーメントMob(Nm)	6.27E+19	Mob=Mo-Moa
要素断層の平均モーメント	2.23E+17	
すべり量Db(m)	1.63	Mob= µ DbSb
応力パラメータ b(MPa)	4.1	=2.436Mo/S ^{1.5}
fc(Hz)	0.069	$fc=4.9 \times 10^{6} Vs(b/Mob)^{1/3}$
短周期レベル(Nm/s ²)	1.17E+19	A=Mob × $(4.9 \times 10^{6}$ Vs $(b/Mob)^{1/3} \times 2)^{2}$

図 4.2.15 東京湾北部直下のプレート内 地震(M7.3)による震度分布 平均応力パラメータは 5MPa。右図の緑色 部分はアスペリティ、印は破壊開始点、 印はアスペリティの破壊開始点。 地表における震度は工学的基盤における 震度に非線形効果を考慮した表層の増幅 率(中央防災会議「東海地震に関する専門 調査会」)を用いて推計した。 断層近傍での振幅を適切に評価するため のパラメタCは 2.8km とした。

表4.2.4 活断層の断層パラメータリスト

养弱性	関東平野北西縁断層帯	立川断層帯		伊勢原断層帯		神縄·国府津-松田断層帯		一法业白水园来	
医副书		立川断層1	立川断層2	名栗断層	伊勢原断層1	伊勢原断層2	神縄断層	国府津-松田断層	二油干局町僧群
緯度(°)	36.2171	35.6608	35.7746	35.8303	35.3648	35.4669	35.3624	35.1387	35.1741
経 <u>度(</u> °)	139.2410	139.4409	139.3473	139.2953	139.3032	139.2911	139.1581	139.3001	139.7725
上端深さd(km)	5.0			5.0		5.3		5.0 ~ 7.7	6.5
長さL(km)	26	15	7	11	12	10	16	26	28
幅W(km)	18			13		15		15 ~ 18	16
走向	128	326	316	298	355	319	275	330	300
(li) (li) (li) (li) (li) (li) (li) (li)	45			80		60		45	45
	90			60		90		90	180
	7.2			7.3		7.0		7.5	7.2
地震モーメントMo(Nm)	2.50E+19			3.38E+19		1.36E+19		6.21E+19	2.50E+19
モーメントマグニチュードMw	6.86			6.95		6.69		7.13	6.86
マクロ的に見たパラメータ									
断層面積S(km ²)	478			435		323		697	455
S波速度Vs(km/s)	3.5			3.5		3.5		3.5	3.5
平均密度 (g/cm ³)	2.8			2.8		2.8		2.8	2.8
剛性率 μ (N/m²)	3.4E+10			3.4E+10		3.4E+10		3.4E+10	3.4E+10
平均的な応力パラメータ (MPa)	3.0			3.0		3.0		3.0	3.0
平均すべり量D(m)	1.52			2.27		1.23		2.60	1.60
破壊伝播速度Vr(km/s)	2.5			2.5		2.5		2.5	2.5
要素断層の大きさ(km)	2.0 × 2.0			1.9 × 1.9		2.0 × 2.0		2.0 × 2.0	2.0 × 2.0
要素断層の数(アスペリティ)	24	12	-	-	9	-	15	21	24
要素断層の数(背景領域)	93	44	28	42	33	35	57	86	88
C(km)	7			8.8		10		8.9	10
Fmax(Hz)	6			6		6		6	6
fc(Hz)	0.085			0.0765		0.104		0.0625	0.085
短周期レベルA(Nm/s ²)	7.06E+18			7.81E+18		5.77E+18		9.56E+18	7.06E+18
アスペリティ等内部パラメータ									
アスペリティの総面積Sa(km ²)	98	43			38		61	86	98
アスペリティ内の平均すべり量Da(m)	3.05	5.15			2.56		4.72	5.52	3.20
アスペリティでの総モーメントMoa(Nm)	1.02E+19	7.60E+18			3.31E+18		9.95E+18	1.63E+19	1.08E+19
要素断層の平均モーメント(Nm)	4.27E+17	6.33E+17			3.68E+17		6.63E+17	7.74E+17	4.48E+17
アスペリティの総応力パラメータ a(MPa)	14.6	14.0			14.0		14.4	14.1	13.9
fc(Hz)	0.193	0.210			0.277		0.194	0.164	0.187
短周期レベル(Nm/s ²)	1.51E+19	1.33E+19			1.01E+19		1.48E+19	1.72E+19	1.48E+19
背景領域									
面積Sb(km ²)	380			392		285		549	357
地震モーメントMob(Nm)	1.47E+19			2.62E+19		1.03E+19		3.58E+19	1.42E+19
要素断層の平均モーメント(Nm)	1.55E+17			2.68E+17		1.44E+17		2.61E+17	1.59E+17
すべり量Db(m)	1.13			1.95		1.05		1.90	1.16
応力パラメータ b(MPa)	2.9			2.8		2.8		2.9	2.8
fc(Hz)	0.100			0.0814		0.111		0.074	0.100
短周期レベル(Nm/s ²)	5.82E+18			6.85E+18		5.02E+18		7.75E+18	5.57E+18

図 4.2.18 立川断層帯の地震(M7.3) による震度分布 断層長さは 33km、断層の上端深さは 5km、平均応力パラメータは 3MPa。右図 の緑色部分はアスペリティ、印は破壊開 始点、印はアスペリティの破壊開始点。 地表における震度は工学的基盤における 震度に非線形効果を考慮した表層の増幅 率(中央防災会議「東海地震に関する専門 調査会」)を用いて推計した。 断層近傍での振幅を適切に評価するため のパラメタCは8km とした。

図 4.2.20 伊勢原断層帯の地震(M7.0) による震度分布 断層長さは 22km、断層の上端深さは 5.3km、平均応力パラメータは 3MPa。右 図の緑色部分はアスペリティ、印は破壊 開始点、印はアスペリティの破壊開始点。 地表における震度は工学的基盤における震 度に非線形効果を考慮した表層の増幅率 (中央防災会議「東海地震に関する専門調 査会」)を用いて推計した。 断層近傍での振幅を適切に評価するための パラメタCは8kmとした。

- 曲線は経験式による計測震度の距離減衰で、表層平均S波
- 速度(AVS30)が150m/s、300m/sの場合を示す。

新 函班	茨城県南部	多摩地区	
緯度(°)	35 7800	35 4500	
经度(°)	140 4000	139 8400	
た)(m)	140.4000	100.0400	
上端///CO(((iii)) 与さし(km)	63.64	63.64	
	21.02	21.02	
(個W(KIII) 主白	31.02	31.02	
	290	290,260	
	23	23,26	
	138	138,150	
	7.3	7.3	
地震モーメンドMo(Nm)	1.12E+20	1.12E+20	logMo=1.5Mw+16.1(金森)
モーメントマグニチュードMw	7.3	7.3	
マクロ的に見たパラメータ			45 45
断層面積S(km²)	2025	2025	$=7^{1.5}/16 \times Mo/S^{1.5}$
S波速度Vs(km/s)	3.5	3.5	地殻内の平均的値
平均密度 (g/cm ³)	2.8	2.8	地殻内の平均的値
剛性率 µ (N/m ²)	3.4E+10	3.4E+10	$\mu = Vs^2$
平均的な応力パラメータ (MPa)	3	3	
平均すべり量D(m)	1.62	1.62	Mo= u DS
·····································	2.5	2.5	Vr=0.72Vs
要素新層の大きさ(km)	5 0X5 0	5 0X5 0	
	18	18	
	63	63	
	28	2.8	
Emox/Hz)	2.0	2.0	氏庫県南部地震の観測記録から推定された値
fo/(1z)	0.051	0.051	大庫宗用部地展の観別記録 $N^{1/3}$
$\frac{IC(\Box Z)}{I = EE \pm EE + EE + EE + EE + EE + EE + EE$	1.105.10	0.001	$10^{-4.9} \times 10^{-10} \text{ Vs}(710)$
短周期レベルA(Nm/s ⁻)	1.16E+19	1.16E+19	$A = MO \times (4.9 \times 10^{\circ} Vs(/MO)^{\circ} \times 2)^{\circ}$
アスペリティ等内部ハフメータ			
アスペリティの総面積Sa(km²)	450	450	Sa=S × 0.22
アスペリティ内の平均すべり量Da(m)	3.23	3.23	Da=D × 2.01
アスペリティでの総モーメントMoa(Nm)	4.99E+19	4.99E+19	Moa= µ DaSa
要素断層の平均モーメント(Nm)			
アスペリティの総応力パラメータ a(MPa)	12.7	12.7	=2.436Mo/S ^{1.5}
fc(Hz)	0.109	0.109	fc=4.9 × 10 ⁶ Vs(a/Moa) ^{1/3}
短周期レベル(Nm/s ²)	2.33E+19	2.33E+19	$A=Moa \times (4.9 \times 10^{6} Vs(a/Moa)^{1/3} \times 2)^{2}$
(アスペリティ1)			
アスペリティ1の総面積Sa1(km ²)	325	325	Sa1=S x 0.22
アスペリティ1内の平均すべ11量Da1(m)	3.61	3.61	Moa1- u Da1Sa1
アフペリティ1での総モーメントMos1(Nm)	4 03E±10	4.03E±10	$Moa1 = Moa \times Sa1^{1.5}$ $Sai^{1.5}$
	4.03L+19	4.03L+19	
	3.10E+10	3.10E+10	of 0.406Moot (Sot1.5
アスペリティ1の総心ノハラメータ a1(MPa)	16.7	16.7	a1=2.430M0a1/Sa1
fca1(Hz)	0.128	0.128	$fca1=4.9 \times 10^{\circ}Vs(a1/Moa1)^{1/2}$
短周期レベル(Nm/s ²)	2.60E+19	2.60E+19	$Aa1=Moa1 \times (4.9 \times 10^{\circ}Vs(a1/Moa1)^{1/3} \times 2)^{2}$
(アスペリティ2)			
アスペリティ2の総面積Sa2(km²)	125	125	Sa2=S × 0.22
アスペリティ2内の平均すべり量Da2(m)	2.24	2.24	Moa2= µ Da2Sa2
アスペリティ2での総モーメントMoa2(Nm)	9.60E+18	9.60E+18	Moa2=Moa × Sa2 ^{1.5} / Sai ^{1.5}
アスペリティ2の要素断層の平均モーメント(Nm)	1.92E+18	1.92E+18	
アスペリティ2の総応力パラメータ a2(MPa)	16.7	16.7	a2=2.436Moa2/Sa2 ^{1.5}
fc(Hz)	0.206	0.206	$f_{ca2=4.9 \times 10^6 Vs} (a2/Moa2)^{1/3}$
50. / 毎周期レベル(Nm/s ²)	1 62F±10	1 62F±10	$A=M_{0}a^{2} \times (49 \times 10^{6} \text{Vs}) (a^{2}/M_{0}a^{2})^{1/3} \times 2^{1/2}$
習書領域	1.022713	1.022713	A HIGH A TO VO(UL/WOUL) XL)
而结\$h/km ²)	1676	1676	Sh-S-Sa
国信(SU(NIII) 地震モーメントMob(Nim)	E 22E - 40	10/0 6 00E - 40	SD=3-5a Moh-Mo-Moo
パートン(1000(NIII) 一手作届の平均エーメント(Nm)	0.230+19	0.235+19	IVIUD=IVIU-IVIUd
女系町/眉の平均て=アノ『(NM) まずい見Db/m)	9.895+17	9.895+17	
	1.15	1.15	
NDNフメータ b(MPa)	2.4	2.4	b=2.436Mob/Sb ^{+~}
fc(Hz)	0.058	0.058	$fcb=4.9 \times 10^{\circ}Vs(b/Mob)^{1/3}$
短周期レベル(Nm/s ²)	8.32E+18	8.32E+18	Ab=Mob × $(4.9 \times 10^{6}$ Vs $(b/Mob)^{1/3} \times 2)^{2}$

表 4.2.5 都心部周辺地域のプレート境界地震の断層パラメータリスト

発生時刻	2000 年 7 月 15 日 10 時 30 分 32.3 秒(地震月報による)
規模	M6.3(地震月報による)
震央	34.4°N 139.3°E 深さ6km (EIC地震学ノートによる)
走向	277°(EIC 地震学ノートによる)
傾斜	86°(EIC 地震学ノートによる)
すべり角	163°(EIC 地震学ノートによる)
モーメント	1 . 3 × 1 0 ⁸ Nm (EIC地震学ノートによる)
破壊継続時間	7 秒 (EIC 地震学ノートによる)
震源時間関数	周期7秒のベル型の速度関数
破壊速度	2 . 7 km/s
計算対象領域	北緯 34 - 36.5 度、東経 138.75 - 140.45 度
グリッドサイズ	水平方向 200m, 垂直方向 200m から 1200m の不等間隔格子を採用

表 5.1.1 差分法に用いた震源パラメタ

神津島地震最大速度 差分法結果 最大速度 cm/s 0.7~ 0.5~0.7 0.2~0.5 0.1~0.2 36 0.05~0.1 • ~0.05 35 .D. 34 139 140 141

図 5.1.2 神津島地震の差分法による最大速度分布

図 5.1.4 神津島地震における観測最大速度と計算最大速度の比

図 5.1.5 計算波形と観測波形 (青:観測、赤:計算)

図 5.1.6 計算スペクトルと観測スペクトル(青:観測、赤:計算)

観測波形(上図)の結果では,震源の影響の大きいと考えられる 震源距離が近い観測点はプロットしていない また,差分法の結果(下図)では周期4秒以下の振幅が精度良く評価 できないため地盤のTgが4秒以下の地点のデータはプロットしていない

図 5.1.7 地盤の固有周期と応答スペクトルの卓越周期 (上図:観測波形の卓越周期,下図:差分法による波形の卓越周期)

最大速度の距離減衰式(司・翠川(1999)平均深さ9.9km、Mw=6.6)との比較

図 5.2.1 計算された工学的基盤における最大速度の分布と距離減衰(都心東部直下の地震)

図 5.2.2 計算された工学的基盤における最大速度の分布と距離減衰 (東京湾北部直下のプレート境界地震)

最大速度の距離減衰式(司・翠川(1999)平均深さ13.5km、Mw=7.13)との比較

図 5.2.3 計算された工学的基盤における最大速度の分布と距離減衰 (神縄・国府津 松田断層帯の地震)

図 5.2.4 S 波主要動以降の速度応答(都心東部直下の地震) 応答スペクトルは水平2成分のうち大きな値をプロットしている。 減衰定数は 5%。

図 5.2.5 S 波主要動以降の速度応答(東京湾北部直下のプレート境界地震) 応答スペクトルは水平2 成分のうち大きな値をプロットしている。 減衰定数は 5%。

図 5.2.6 S 波主要動以降の速度応答(神縄・国府津-松田断層帯の地震) 応答スペクトルは水平2成分のうち大きな値をプロットしている。 減衰定数は5%。

図 5.2.7 周期ごとの速度応答波形(霞が関 NS 成分) 減衰定数は 5%。

図 5.2.8 周期ごとの速度応答波形(市原 NS 成分) 減衰定数は 5%。

図 5.2.9 周期ごとの速度応答波形(秩父 NS 成分) 減衰定数は 5%。

(都心東部直下の地震)

(東京湾北部直下のプレート境界地震)

(神縄・国府津 松田断層帯の地震)

断層	東京湾北部直下 のプレート境界	都心東部直下	東京湾内津波 最大級ケース	神縄·国府津-松田断層帯		二浦光官艇國耕主动
				神縄断層	国府津-松田断層	一冊十両町信件工마
緯度(°)	35.3200	35.590	35.4635	35.3624	35.1387	35.1741
経度(°)	140.1400	139.828	139.9281	139.1581	139.3001	139.7725
上端深さd(km)	30前後	6.0	6.0	5.0	5.0 ~ 7.7	6.5
長さL(km)	63.64	17.38	17.38	16	26	28
幅W(km)	31.82	11.22	11.22		15 ~ 18	16
走向	296	315	315	275	330	300
傾斜 (°)	23	45	45		45	45
すべり角 (°)	138	90	90		90	180
マグニチュードM	7.3	6.9	6.9		7.5	7.2
地震モーメントMo(Nm)	1.12E+20	1.00E+19	1.00E+19		6.21E+19	2.50E+19
モーメントマグニチュードMw	7.3	6.6	6.6		7.13	6.86
平均すべり量D(m)	1.62	1.50	1.50		2.60	1.60

図 6.1.2 津波の想定対象とした地震の位置図

図 6.1.3(1) 海岸における津波高(その1)

(10cm 未満の津波高さは表示していない。)

図 6.1.3(2) 海岸における津波高(その2)

(10cm 未満の津波高さは表示していない。)

図 6.1.4 津波高分布の比較(東京湾内)

参考図1 安政江戸地震(1855年)における推計震度分布図(現在精査中) 中村(2004)による

参考図2 安政江戸地震の詳細震度分布と震度増分(50m メッシュ)

参考図3 安政江戸地震の詳細震度分布と微地形区分

Symbols of surfaces are the same as Fig. 8.

久保(1988)によれば、

山の手の台地(武蔵野台地)を流れる神 田川、目黒川、仙川、渋谷川、呑川の各河 川の中流域の谷部(左図の :太い黒点の 連続部分)においては、タイプ2の谷の特 徴を持っているとしている。

この特徴とは、やや傾斜が急になってい て、表層のローム層を削っており、谷底の 表面はやわらかい堆積土であるが砂礫(東 京レキ層)が浅く現れる。一方、河川脇の 台地上では地表のローム層が残っていて、 砂礫層までの深さが谷部よりも相対的に 深くなっているというものである。

参考図5 武蔵野台地南東部の谷の 縦断系による分類 (久保(1988)に加筆)