6.津波の計算手法

1) データ作成

1-1. 地形データの作成

1-1-1.作成に使用したデータ、図面等

以下のデータ、図面を使用した

- ・ETOPO2(2分メッシュ全地球地形データ)米国地球物理データセンター
- ・日本近海 1000m メッシュ海底地形デジタルデータ、(財)日本水路協会、 2範囲(南西日本・南西諸島)
- ・沿岸の海の基本図デジタル、(財)日本水路協会、97範囲
- ・沿岸の海の基本図、(財)日本水路協会、15範囲
- ・沿岸海域土地条件図、国土地理院、4範囲(四日市、半田、津東部、師崎)
- ・海図、海上保安庁、204 範囲
- ・電子海図、海上保安庁、E3011~E3018・E3021
- ・湖沼図、国土地理院、浜名湖
- ・数値地図 25000 (行政界・海岸線) 国土地理院
- ・数値地図 50m メッシュ (標高) 国土地理院、
- ・数値地図 250m メッシュ (標高) 国土地理院
- ·河川横断測量結果、国土交通省、一級河川(52河川)

1-1-2. メッシュデータの作成

上記データから TIN (Triangulated Irregular Network; 三角形不規則網)を 作成し、線形補間により各メッシュに対してメッシュ中心の標高 / 水深を与え る。

1-2. 粗度データの作成

計算に使用する全メッシュに対してマニングの粗度係数を与える。マニングの粗度係数は表面の粗さの程度をあらわす係数であり、プログラム中では運動 方程式中の摩擦項に取り入れられて、遡上に対する抵抗力を決める。粗度係数 が大きくなるほど、遡上に対する抵抗力が大きくなり、津波は遡上しにくくな る。

粗度係数の値としてはいくつかの研究例がある。本調査では、小谷(1998)¹ を参考に、土地利用条件に従って粗度係数を設定する。

¹ 小谷美佐, 1998, 東北大学大学院工学研究科修士論文.

1-2-2. 作成に使用したデータ、図面等

以下のデータを使用した。

- ・国土数値情報(土地利用)、国土交通省
- ・細密数値情報(10m メッシュ土地利用) 首都圏 1994 年版、国土地理院
- ・細密数値情報(10m メッシュ土地利用)中部圏 1997 年版、国土地理院
- ・細密数値情報(10m メッシュ土地利用) 近畿圏 1996 年版、国土地理院

1-2-3.メッシュデータの作成

上記データの土地利用条件から、以下の表に従って各メッシュに粗度係数を 与える。

データ名	国土数値情報 (土地利用)	細密数値情報
縮尺	100m メッシュ	10m メッシュ
住宅地	建物用地	一般低層住宅地 密集低層住宅地 中高層住宅地 商業・業務用地
粗度係 数		80~100%:0.080 40~80%:0.060 10~40%:0.040 (50mメッシュ内で)
工場地等		工業用地 その他の公共公益 施設用地
粗度係 数	0.040	0.040
農地	田 その他農用地	田 畑・その他の農地
粗度係 数	0.020	0.020
林地	森林	山林・荒地等
粗度係 数	0.030	0.030
水域	河川地及び湖 沼 海浜 海水域	河川・湖沼等 海
相度係 数	0.025	0.025
その他(空 地、緑地)	荒地 その他の用地 (空地等) 幹線交通用地 ゴルフ場	公園・緑地等 造成中地 道路用地 空地 その他
粗度係 数	0.025	0.025

表 5.1.1 マニングの粗度係数の設定値

1-3. 堤防データの作成

計算プログラムにおいて、堤防は線形構造物として取り扱い、メッシュ間に 配置される。計算される津波の高さが堤防の高さを越えた場合に、津波が越流 するものとし、越流量は本間の越流公式から求める。

以下にデータの配置イメージを示す。

図 5.1.1 堤防データ(平面イメージ)

図 5.1.2 堤防データ(断面イメージ)

1-3-1. 作成に使用したデータ、図面等

堤防の位置を国土交通省河川局海岸室所有の図面をもとに調べ、堤防の高さ を各都府県提供の『海岸保全施設一覧表』より与えた。 1-3-2.メッシュデータの作成

データは以下の手順で作成する。

上記図面から、堤防の位置をデジタイズする(ラインデータの作成)。 作成したラインデータをメッシュの4辺に投影して、堤防データとする。 作成したデータは、各都府県に照会し、現況に合わせて修正した。

2)津波計算手法

2-1.計算手法

試算は差分法により数値的に行う。計算プログラムは、東北大学工学部で開発されたプログラムを用いる。このプログラムでは、Staggered leap-frog法で支配方程式(運動方程式、連続の式)を差分化して数値計算が行われる。

支配方程式は非線形長波理論であり、下記に示す。

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = \frac{\partial \xi}{\partial t}$$
(1)
$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{D}\right) + \frac{\partial}{\partial y} \left(\frac{MN}{D}\right) + gD \frac{\partial \eta}{\partial x} + \frac{gn^2 M \sqrt{M^2 + N^2}}{D^{7/3}} = 0$$
(2)

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{D}\right) + \frac{\partial}{\partial y} \left(\frac{N^2}{D}\right) + gD \frac{\partial \eta}{\partial y} + \frac{gn^2 N \sqrt{M^2 + N^2}}{D^{7/3}} = 0$$
(3)

:水位、 *M,N*:*x,y*方向の線流量 :海底鉛直変位分 *D*:全水深(=*h*+) n:マニングの粗度係数

初期水位は、断層モデルから弾性体理論に基づいて計算される海底地殻変動 (垂直変動量)を、全地点で時間差なしに与える。

2-2.計算条件の設定

各条件は以下のとおりとする。

- ・メッシュサイズ:深海部では大きな(1350m)メッシュ領域とし、沿岸部に
 近づくにつれてより小さな(450m、150m、50m)メッシュ領域を設定して計算する(空間接続)。
- ・積分時間:地震発生から12時間とした。
- ・積分時間間隔:計算が安定して行われるように各格子領域で適切な時間格 子間隔を設定する。
- ・境界条件:沖合は自由透過、陸上は小谷ほか(1998)²の遡上境界とする。
- ・初期潮位:潮位は、満潮位とする。満潮位の値は、「平成 14 年度気象庁潮

²小谷ほか ,1998 GIS を利用した津波遡上計算と被害推定法 ,海岸工学論文集 ,45 ,356-360.

位表」より、各地の推定潮位の年間最高値を調べ、その値を元に設定した。 2-3.計算範囲の設定

計算は、メッシュサイズが異なる複数の領域を入れ子状に組み合わせて、外 洋部は最も粗いメッシュとし、陸域に近づくほど細かいメッシュとなるように して行った。そのため複数のメッシュサイズがある。メッシュサイズの種類は、 1350m、450m、150m、50mの4種類であり、各領域の数は以下のとおりであ る。

1350m メッシュ領域:1領域

0450m メッシュ領域:2領域(大阪湾:1領域、伊勢湾:1領域) 0150m メッシュ領域:3領域(大阪湾:1領域、伊勢湾:2領域)

0050m メッシュ領域:5領域(大阪湾:1領域、伊勢湾:4領域)

計算の座標系にはUTM座標系(53帯)を採用した。測地系は、旧日本測地 系である。

各領域の UTM53 帯における位置、およびメッシュ数を表 5.2.2~表 5.2.5 に 示す。各領域の位置は、領域の北西端の位置で示されている。また、図 5.2.1 ~図 5.2.2 に各領域の位置図を示す。

2-4. 各計算範囲の設定満潮位

満潮位の値は「平成14年度気象庁潮 位表」より、各地の推定潮位の年間最 高値を調べ、その値を元に設定した。 表2-4-1に、設定した満潮位を示す。

表 5.2.1 各計算範囲の設定満潮位 (東京湾平均海面基準)

計算	範囲	設定満潮位	参照地点 [※]		
伊執迹	49	1.23	津		
	50	1.29	名古屋		
け劣冷	51	1.22	篠島		
	52	1.22	篠島		
大阪湾	92	1.25	友ケ島		

※「平成14年潮位表(気象庁)」記載の地点名

2-6.断層モデルの設定

断層モデルは、基本的に強震動推計のための断層モデルと同じとした。ただし、強震動推計で設定した断層モデルの上端の深さは4km 程度であるが、今回の津波の断層モデルは、断層上端が海底面まで達しているものとした。

2-5. 出力データ

アウトプットとして以下の項目を出力した。

最大津波高、 最低津波高、 津波到達時間、 最大津波高到達時間、 代表地点の時刻歴波形

エリアNo. メッシュサイス (m)		北西端 (UTM	の位置 53帯)	メッシ	ュ個数	領域のサイズ	
エリアNo.	(m)	X座標 (m)	Y座標(m)	X方向 (個)	Y方向 (個)	X方向(m)	Y 方向 (m)
1350-02	1,350	-135,000	4,015,000	900	550	1,215,000	742,500

表 5.2.2 津波数値計算の 1350m メッシュ領域の位置およびサイズ

表 5.2.3 津波数値計算の 450m メッシュ領域の位置およびサイズ

メッシュサイ	メッシュサイズ	北西端の位置(UTM53帯)		メッシ	ュ個数	領域のサイズ	
エリアNo.	(m)	X座標 (m)	Y座標(m)	X方向 (個)	Y方向 (個)	X方向(m)	Y 方 向(m)
0450-06	450	108,000	3,866,500	1,020	600	459,000	270,000
0450-07	450	526,500	3,907,000	630	510	283,500	229,500

表 5.2.4 津波数値計算の 150m メッシュ領域の位置およびサイズ

	メッシュサイズ	北西端の位置 (UTM53帯)		メッシ	ュ個数	領域のサイズ	
エリア NO.	(m)	X座標(m)	Y座標(m)	X方向 (個)	Y方向 (個)	X方向(m)	Y 方 向(m)
0150-20	150	625,500	3,898,000	660	630	99,000	94,500
0150-21	150	675,000	3,871,000	720	420	108,000	63,000
0150-45	150	459,000	3,862,000	720	600	108,000	90,000

表 5.2.5 津波数値計算の 50m メッシュ領域の位置およびサイズ

エリマNo メッシュサイズ		北西端 (UTM	の位置 53帯)	メッシ	ュ個数	領域のサイズ		
エリアNo.	(m)	X座標(m)	Y座標(m)	X方向 (個)	Y方向 (個)	X方向(m)	Y方向(m)	
0050-49	50	630,000	3,848,500	1,200	810	60,000	40,500	
0050-50	50	630,000	3,896,500	1,080	960	54,000	48,000	
0050-51	50	673,500	3,883,000	960	960	48,000	48,000	
0050-52	50	679,500	3,847,000	930	570	46,500	28,500	
0050-92	50	486,000	3,853,000	1,410	1,290	70,500	64,500	

図 5.2.1 津波数値計算のメッシュ領域位置図(1350m、450m、150m メッシュ領域)

図 5.2.2 津波数値計算のメッシュ領域位置図(150m、50m メッシュ領域)

【大阪湾断層】津波高の比較

津波高さ	(m)
5.0 - 3.0 - 2.0 - 1.0 - 0.5 - 0.0 -	5.0 3.0 2.0 1.0 0.5

断層モデル 断層部位	新國部位	緯度	経度	深さ	走向	傾斜	すべり角	長さ	幅	すべり量
	(度)	(度)	(km)	(度)	(度)	(度)	(km)	(km)	(m)	
相ウトゴル	主断層	34.677	135.239	4.2	208.8	60.0	90.0	39.1	12.5	3.6
あたてノン	浅部断層	34.667	135.262	0.0	208.8	60.0	90.0	39.1	4.9	4.9

図 5.2.3	大阪湾断層帯	想定モデル
---------	--------	-------

新屋モデル	新国部位	緯度	経度	深さ	走向	傾斜	すべり角	長さ	幅	すべり量
	이 김 대한 1호	(度)	(度)	(km)	(度)	(度)	(度)	(km)	(km)	(m)
	断層①	34.674	135.238	0.0	188.4	60.0	90.0	6.6	20.0	1.4
	断層②	34.616	135.227	0.0	241.0	60.0	90.0	7.1	20.0	2.7
河田ほか	断層③	34.585	135.159	0.0	217.8	60.0	90.0	8.2	20.0	4.0
(2004)	断層④	34.527	135.104	0.0	196.9	60.0	90.0	19.1	20.0	4.0
Model- I	断層⑤	34.675	135.198	0.0	194.9	60.0	90.0	9.7	20.0	1.4
	断層⑥	34.664	135.255	0.0	186.1	60.0	90.0	2.4	20.0	1.4
	断層⑦	34.642	135.252	0.0	222.9	60.0	90.0	3.2	20.0	1.4

図 5.2.4 大阪湾断層帯 河田ほか(2004) モデル

図 5.2.5 東南海・南海地震 (中央防災会議モデル)

6-11

【伊勢湾断層】津波高の比較

新國エデル	新園モデル 新園部位	緯度	経度	深さ	走向	傾斜	すべり角	長さ	幅	すべり量
岡唐でブレー町唐部位	(度)	(度)	(km)	(度)	(度)	(度)	(km)	(km)	(m)	
伊勢湾断層 主断層	34.761	136.822	5.2	341.4	60.0	90.0	25.0	14.8	2.7	
	34.687	136.975	4.0	300.1	60.0	90.0	16.0	16.2	2.7	
想定モデル	想定モデル 浅部は加断層	34.752	136.791	0.0	341.4	60.0	90.0	25.0	6.0	3.8
	同時に	34.669	136.962	0.0	300.1	60.0	90.0	16.0	4.6	3.8

図 5.2.8 東南海・南海地震 (中央防災会議モデル)

【伊勢湾断層】図 5.2.9 浸水範囲の比較 (満潮位条件で計算)

6-13

主断層のすべり量:D₁

Moから次式を用いて推定

 $M_0 = \mu_1 D_1 S$

µ1: 概ね上部地殻の剛性率を適用(µ1=3.43×10¹⁰ N/m²)

浅部付加断層のすべり量:D₂

浅部の付加断層も同様に動くとし、その変位量は

$$D_2 = D_1 \cdot \mu_1 / \mu_2$$

と仮定して推定

- D1: 主断層の変位量
- μ1: 概ね上部地殻の剛性率を適用(μ1=3.43×10¹⁰ N/m²)

 μ_2 : 概ね地震基盤の剛性率を適用($\mu_2 = 2.50 \times 10^{10} \text{ N/m}^2$)

表 5.2.6 浅部の剛性率の設定に用いた地下構造モデル (地震調査研究推進本部による)

衣 「 入情道」の伝播経路の地下構造モテル											
山小	(km)	/皆/子 (km)	(km/s)	(km/s)	(g/cm ³)	父 厄					
地震基盤	0.1~3.5	$0.5 \sim 4$	5.2	3.1	2.6	100					
上部地殻	1~4	$12 \sim 15$	6.0	3.4	2.7	300					
下部地殻	$15 \sim 17$	$16 \sim 19$	6.7	3.8	2.9	500					
上部マントル	$32 \sim 35$		7.8	4.4	3.3	500					